The shape of the bending moment diagram over the length of a beam, carrying a uniformly 

increasing load, is always 

(A) Linear 

(B) Parabolic 

(C) Cubical 

(D) Circular 

1 Answer

Answer :

(C) Cubical 

Related questions

Description : The shape of the bending moment diagram over the length of a beam, carrying a uniformly  distributed load is always  (A) Linear  (B) Parabolic  (C) Cubical  (D) Circular

Last Answer : (B) Parabolic 

Description : The shape of the bending moment diagram over the length of a beam, having no external load, is always (A) Linear (B) Parabolic (C) Cubical (D) Circular

Last Answer : (A) Linear

Description : In a cantilever carrying a uniformly varying load starting from zero at the free end, the Bending moment diagram is (a) A horizontal line parallel to x-axis (b) A line inclined to x-axis (c) Follows a parabolic law (d) Follows a cubic law

Last Answer : (d) Follows a cubic law

Description : For a simply supported beam carrying uniformly distributed load W on it entire length L, the maximum bending moment is (A) WL/4 (B) WL/8 (C) WL/2 (D) WL/3

Last Answer : (B) WL/8

Description : Variation of bending strain in a beam has (a) Parabolic variation (b) Linear variation (c) Cubical variation (d) None

Last Answer : (b) Linear variation

Description : Variation of bending stresses in a beam have (a) Parabolic variation (b) Linear variation (c) Cubical variation (d) None

Last Answer : (b) Linear variation

Description : A cantilever carrying a uniformly distributed load W over its full length is propped at its free end such that it is at the level of the fixed end. The bending moment will be zero at its free end also at ... point of the cantilever (C) 1/4th length from free end (D) 3/4th length from free end

Last Answer : (D) 3/4th length from free end

Description : If a constant section beam is subjected to a uniform bending moment throughout, its length bends  to  (A) A circular arc  (B) A parabolic arc  (C) A catenary  (D) None of these 

Last Answer : (A) A circular arc 

Description : For finding out the bending moment for the arm (spoke) of flywheel the arm is assumed as 1. a cantilever beam fixed at the rim and subjected to tangential force at the hub 2. a simply ... tangential force at the rim 4. a fixed beam fixed at hub and rim and carrying uniformly distributed load

Last Answer : 3. a cantilever hub fixed at the rim and subjected to tangential force at the rim

Description : For finding out the bending moment for the arm (spoke) of flywheel, the arm is assumed as, (A) A cantilever beam fixed at the rim and subjected to tangential force at the hub (B) A simply ... tangential force at the rim (D) A fixed beam fixed at hub and rim and carrying uniformly distributed load

Last Answer : (C) A cantilever beam fixed at the hub and subjected to tangential force at the rim

Description : The maximum bending moment for a simply supported beam with a uniformly distributed  load w/unit length, is  (A) WI/2  (B) WI²/4  (C) WI²/8  (D) WI²/12

Last Answer : (C) WI²/8 

Description : If a three hinged parabolic arch carries a uniformly distributed load on its entire span, every section of the arch resists. (A) Compressive force (B) Tensile force (C) Shear force (D) Bending moment

Last Answer : (A) Compressive force

Description : If a three hinged parabolic arch, (span l, rise h) is carrying a uniformly distributed load w/unit  length over the entire span,  (A) Horizontal thrust is wl2 /8h (B) S.F. will be zero throughout  (C) B.M. will be zero throughout  (D) All the above 

Last Answer : (D) All the above 

Description : In a simply supported beam subjected to uniformly distributed load (w) over the entire length (l), total load=W, maximum Bending moment is (a) Wl/8 or wl2/8 at the mid-point (b) Wl/8 or wl2/8 at the end (c) Wl/4 or wl2/4 (d) Wl/2

Last Answer : (a) Wl/8 or wl2/8 at the mid-point

Description : A sudden jump anywhere on the Bending moment diagram of a beam is caused by (a) Couple acting at that point (b) Couple acting at some other point (c) Concentrated load at the point (d) Uniformly distributed load or Uniformly varying load on the beam

Last Answer : (a) Couple acting at that point

Description : For any part of a beam subjected to uniformly distributed load, bending moment diagram is (a) Horizontal straight line (b) Vertical straight line (c) Line inclined to x-axis (d) Parabola

Last Answer : d) Parabola

Description : The maximum deflection of  (A) A simply supported beam carrying a uniformly increasing load from either end and having  the apex at the mid span is WL3 /60EI (B) A fixed ended beam ... ended beam carrying a concentrated load at the mid span is WL3 /192EI (D) All the above 

Last Answer : (D) All the above 

Description : In a simply supported beam, bending moment at the end (a) Is always zero if it does not carry couple at the end (b) Is zero, if the beam has uniformly distributed load only (c) Is zero if the beam has concentrated loads only (d) May or may not be zero

Last Answer : (a) Is always zero if it does not carry couple at the end

Description : When the bending moment is parabolic curve between two points, it indicates that there is (a) No loading between the two points (b) Point loads between the two points (c) U.D.L. between the two points (d) Uniformly varying load between the two points

Last Answer : (c) U.D.L. between the two points

Description : The horizontal deflection of a parabolic curved beam of span 10 m and rise 3 m when loaded with  a uniformly distributed load l t per horizontal length is (where Ic  is the M.I. at the crown, which  varies as the slope ... arch).  (A) 50/EIc (B) 100/EIc (C) 150/EIc (D) 200/E

Last Answer : (D) 200/E

Description : A simply supported beam of span carries a uniformly distributed load . The maximum bending moment is (A) WL/2 (B) WL/4 (C) WL/8 (D) WL/12

Last Answer : (C) WL/8

Description : In a cantilever carrying a uniformly varying load starting from zero at the free end, the shear force diagram is (a) A horizontal line parallel to x-axis (b) A line inclined to x-axis (c) Follows a parabolic law (d) Follows a cubic law

Last Answer : (c) Follows a parabolic law

Description : For a circular slab carrying a uniformly distributed load, the ratio of the maximum negative to maximum positive radial moment, is (A) 1 (B) 2 (C) 3 (D) 5

Last Answer : Answer: Option B

Description : In a simply supported beam (l + 2a) with equal overhangs (a) and carrying a uniformly distributed load over its entire length, B.M. at the middle point of the beam will be zero if (A) l = 2a (B) l = 4a (C) l < 2a (D) l > a

Last Answer : (A) l = 2a

Description : In case of a cantilever beam having UDL, bending moment variation will be (a) Linear (b) Parabolic (c) Cubic (d) None

Last Answer : (b) Parabolic

Description : In case of a cantilever beam having concentrated loads, bending moment variation will be (a) Linear (b) Parabolic (c) Cubic (d) None

Last Answer : (a) Linear

Description : If a rectangular beam measuring 10 × 18 × 400 cm carries a uniformly distributed load such that the bending stress developed is 100 kg/cm2 . The intensity of the load per metre length, is (A) 240 kg (B) 250 kg (C) 260 kg (D) 270 kg

Last Answer : (B) 250 kg

Description : A uniformly distributed load (w) of length shorter than the span crosses a girder. The bending moment at a section in the girder will be maximum when (a) Head of the load is at the section (b) Tail ... load in the same ratio as it divides the span (d) Section divides the load in two equal lengths.

Last Answer : (c) Section divides the load in the same ratio as it divides the span

Description : A pile of length carrying a uniformly distributed load per metre length is suspended at the centre and from other two points 0.15 L from either end ; the maximum hogging moment will be (A) WL²/15 (B) WL²/30 (C) WL²/60 (D) WL²/90

Last Answer : Answer: Option D

Description : The shear force at the centre of a simply supported beam of span l carrying a uniformly distributed load of w per unit length over the whole span is (a) wl (b) wl/2 (c) wl/4 (d) Zero

Last Answer : (d) Zero

Description : The bending moment diagram for a cantilever with point load, at the free end will be (a) A triangle with max. height under free end (b) A triangle with max. height under fixed end (c) A parabolic curve (d) None of these

Last Answer : (b) A triangle with max. height under fixed end

Description : A simply supported beam carrying a uniformly distributed load over its whole span, is propped at  the centre of the span so that the beam is held to the level of the end supports. The reaction of  ... B) 3/8th the distributed load  (C) 5/8th the distributed load  (D) Distributed load 

Last Answer : (C) 5/8th the distributed load 

Description : Maximum deflection of a (A) Cantilever beam carrying a concentrated load W at its free end is WL3 /3EI (B) Simply supported beam carrying a concentrated load W at mid-span is WL3 /48EI (C) Cantilever beam, carrying a uniformly distributed load over span is WL3 /8EI (D) All the above

Last Answer : (D) All the above

Description : A diagram which shows the variations of the axial load for all sections of the span of a beam, is called (A) Bending moment diagram (B) Shear force diagram (C) Thrust diagram (D) Stress diagram

Last Answer : Answer: Option C

Description : For a reinforced concrete beam section, the shape of shear stress diagram is (a) Parabolic over the whole section with maximum value at the neutral axis. (b) Parabolic above the neutral axis and rectangular below the neutral axis. (c) Linearly varying as the distance form the N.A. (d) All the above.

Last Answer : (b) Parabolic above the neutral axis and rectangular below the neutral axis.

Description : The ratio of the length and diameter of a simply supported uniform circular beam which  experiences maximum bending stress equal to tensile stress due to same load at its mid span, is  (A) 1/8  (B) 1/4  (C) 1/2  (D) 1/3 

Last Answer : (C) 1/2 

Description : Variation of shear stress in a shaft is (a) Parabolic (b) Linear (c) Cubical (d) None

Last Answer : b) Linear

Description : If a rectangular pre-stressed beam of an effective span of 5 meters and carrying a total load 3840 kg/m, is designed by the load balancing method, the central dip of the parabolic tendon should be (A) 5 cm (B) 10 cm (C) 15 cm (D) 20 cm

Last Answer : Answer: Option B

Description : The number of points of contraflexure in a simple supported beam carrying uniformly distributed load, is (A) 0 (B) 1 (C) 2 (D) 3

Last Answer : (A) 0

Description : When a uniformly distributed load, shorter than the span of the girder, moves from left to right, then the conditions for maximum bending moment at a section is that (A) The head of the load ... position should be such that the section divides the load in the same ratio as it divides the span

Last Answer : (D) The load position should be such that the section divides the load in the same ratio as it divides the span

Description : When a uniformly distributed load, longer than the span of the girder, moves from left to right, then the maximum bending moment at mid section of span occurs when the uniformly distributed load occupies (A) Less ... (B) Whole of left half span (C) More than the left half span (D) Whole span

Last Answer : (D) Whole span

Description : Find the correct statement from the followings. (a) For a cantilever slab, the ratio of span to overall depth should not 12. (b) One way slab which carry uniformly distributed load should be designed to ... be designed to resist a hogging moment at the face of the support. (d) All of the above.

Last Answer : (d) All of the above.

Description : If the maximum dip of a parabolic tendon carrying tension P is h and the effective length of the pre-stressed beam is L, the upward uniform pressure will be (A) 8hp/l (B) 8hp/l² (C) 8hl/p (D) 8hl/p²

Last Answer : Answer: Option B

Description : Shear force for a cantilever carrying a uniformly distributed load over its length, is  (A) Triangle  (B) Rectangle  (C) Parabola  (D) Cubic parabola 

Last Answer : (B) Rectangle 

Description : Variation of bending moment due to concentrated loads will be (a) Linear (b) Parabolic (c) Cubic (d) None

Last Answer : (a) Linear

Description : In a simply supported beam carrying a uniformly distributed load over the left half span, the point of contraflexure will occur in (a) Left half span of the beam (b) Right half span of the beam. (c) Quarter points of the beam (d) Does not exist

Last Answer : (d) Does not exist

Description : If the loading on a pre-stressed rectangular beam, is uniformly distributed, the tendon to be provided should be. (A) Straight below centroidal axis (B) Parabolic with convexity downward (C) Parabolic with convexity upward (D) Straight above centroidal axis

Last Answer : Answer: Option B

Description : A simply supported rectangular beam is uniformly loaded and is prestressed. The tendon provided for prestressing should be (a) Straight, above centroidal axis (b) Straight, below centroidal axis (c) parabolic, with convexity upward (d) Parabolic, with convexity downward

Last Answer : (d) Parabolic, with convexity downward

Description : For any part of a beam between two concentrated load, Bending moment diagram is a (a) Horizontal straight line (b) Vertical straight line (c) Line inclined to x-axis (d) Parabola

Last Answer : (c) Line inclined to x-axis

Description : If is the uniformly distributed load on a circular slab of radius fixed at its ends, the maximum positive radial moment at its centre, is (A) 3WR²/16 (B) 2WR²/16 (C) WR²/16 (D) None of these

Last Answer : Answer: Option C