In a spherical dome subjected to concentrated load at crown or uniformly distributed load, the
meridional force is always
(A) Zero
(B) Tensile
(C) Compressive
(D) Tensile or compressive

1 Answer

Answer :

(C) Compressive

Related questions

Description : In a spherical dome the hoop stress due to a concentrated load at crown is (A) Compressive everywhere (B) Tensile everywhere (C) Partly compressive and partly tensile (D) Zero

Last Answer : Answer: Option B

Description : If a three hinged parabolic arch carries a uniformly distributed load on its entire span, every section of the arch resists. (A) Compressive force (B) Tensile force (C) Shear force (D) Bending moment

Last Answer : (A) Compressive force

Description : In a cantilever subjected to a combination of concentrated load, uniformly distributed load and uniformly varying load, Maximum bending moment is (a) Where shear force=0 (b) At the free end (c) At the fixed end (d) At the mid-point

Last Answer : (c) At the fixed end

Description : In a ring beam subjected to uniformly distributed load (i) Shear force at mid span is zero (ii) Shear force at mid span is maximum (iii) Torsion at mid span is zero (iv) Torsion at mid span is maximum The correct answer ... and (iii) (B) (i) and (iv) (C) (ii) and (iii) (D) (ii) and (iv)

Last Answer : Option A

Description : In a simply supported beam, bending moment at the end (a) Is always zero if it does not carry couple at the end (b) Is zero, if the beam has uniformly distributed load only (c) Is zero if the beam has concentrated loads only (d) May or may not be zero

Last Answer : (a) Is always zero if it does not carry couple at the end

Description : The horizontal deflection of a parabolic curved beam of span 10 m and rise 3 m when loaded with  a uniformly distributed load l t per horizontal length is (where Ic  is the M.I. at the crown, which  varies as the slope ... arch).  (A) 50/EIc (B) 100/EIc (C) 150/EIc (D) 200/E

Last Answer : (D) 200/E

Description : A three hinged parabolic arch hinged at the crown and springing, has a horizontal span of 4.8 m  and a central rise of 1 m. It carries a uniformly distributed load of 0.75 tonne per metre over half  left hand span ... A) 10.8 tonnes  (B) 1.08 tonnes  (C) 1.8 tonnes  (D) 0.8 tonnes 

Last Answer : (B) 1.08 tonnes 

Description : For finding out the bending moment for the arm (spoke) of flywheel the arm is assumed as 1. a cantilever beam fixed at the rim and subjected to tangential force at the hub 2. a simply ... tangential force at the rim 4. a fixed beam fixed at hub and rim and carrying uniformly distributed load

Last Answer : 3. a cantilever hub fixed at the rim and subjected to tangential force at the rim

Description : For finding out the bending moment for the arm (spoke) of flywheel, the arm is assumed as, (A) A cantilever beam fixed at the rim and subjected to tangential force at the hub (B) A simply ... tangential force at the rim (D) A fixed beam fixed at hub and rim and carrying uniformly distributed load

Last Answer : (C) A cantilever beam fixed at the hub and subjected to tangential force at the rim

Description : For any part of a beam subjected to uniformly distributed load, Shear force diagram is (a) Horizontal straight line (b) Vertical straight line (c) Line inclined to x-axis (d) Parabola

Last Answer : (c) Line inclined to x-axis

Description : The maximum deflection of  (A) A simply supported beam carrying a uniformly increasing load from either end and having  the apex at the mid span is WL3 /60EI (B) A fixed ended beam ... ended beam carrying a concentrated load at the mid span is WL3 /192EI (D) All the above 

Last Answer : (D) All the above 

Description : Maximum deflection of a (A) Cantilever beam carrying a concentrated load W at its free end is WL3 /3EI (B) Simply supported beam carrying a concentrated load W at mid-span is WL3 /48EI (C) Cantilever beam, carrying a uniformly distributed load over span is WL3 /8EI (D) All the above

Last Answer : (D) All the above

Description : A cantilever carries is uniformly distributed load W over its whole length and a force W acts at its  free end upward. The net deflection of the free end will be  (A) Zero  (B) (5/24) (WL3 /EI) upward  (C) (5/24) (WL3 /EI) downward  (D) None of these 

Last Answer : (B) (5/24) (WL3 /EI) upward

Description : A uniform girder simply supported at its ends is subjected to a uniformly distributed load over its entire length and is propped at the centre so as to neutralise the deflection. The net B.M. at the centre will be (A) WL (B) WL/8 (C) WL/24 (D) WL/32

Last Answer : (D) WL/32

Description : The moment diagram for a cantilever which is subjected to a uniformly distributed load will be a (A) Triangle (B) Rectangle (C) Parabola (D) Cubic parabola

Last Answer : (C) Parabola

Description : A simply supported beam 6 m long and of effective depth 50 cm, carries a uniformly distributed load 2400 kg/m including its self weight. If the lever arm factor is 0.85 and permissible tensile stress of steel is 1400 kg/cm2 ... area of steel required, is (A) 14 cm (B) 15 cm2 (C) 16 cm2 (D) 17 cm

Last Answer : Answer: Option C

Description : A composite beam is composed of two equal strips one of brass and other of steel. If the  temperature is raised  (A) Steel experiences tensile force  (B) Brass experiences compressive force  (C) Composite beam gets subjected to a couple  (D) All the above

Last Answer : (D) All the above

Description : A sudden jump anywhere on the Bending moment diagram of a beam is caused by (a) Couple acting at that point (b) Couple acting at some other point (c) Concentrated load at the point (d) Uniformly distributed load or Uniformly varying load on the beam

Last Answer : (a) Couple acting at that point

Description : The shear force at the centre of a simply supported beam of span l carrying a uniformly distributed load of w per unit length over the whole span is (a) wl (b) wl/2 (c) wl/4 (d) Zero

Last Answer : (d) Zero

Description : In a simply supported beam subjected to uniformly distributed load (w) over the entire length (l), total load=W, maximum Bending moment is (a) Wl/8 or wl2/8 at the mid-point (b) Wl/8 or wl2/8 at the end (c) Wl/4 or wl2/4 (d) Wl/2

Last Answer : (a) Wl/8 or wl2/8 at the mid-point

Description : For any part of a beam subjected to uniformly distributed load, bending moment diagram is (a) Horizontal straight line (b) Vertical straight line (c) Line inclined to x-axis (d) Parabola

Last Answer : d) Parabola

Description : The general expression for the B.M. of a beam of length l is the beam carries M = (wl/2) x - (wx²/2)  (A) A uniformly distributed load w/unit length  (B) A load varying linearly from zero at one end to w at the other end  (C) An isolated load at mid span  (D) None of these 

Last Answer : (A) A uniformly distributed load w/unit length 

Description : If a three hinged parabolic arch, (span l, rise h) is carrying a uniformly distributed load w/unit  length over the entire span,  (A) Horizontal thrust is wl2 /8h (B) S.F. will be zero throughout  (C) B.M. will be zero throughout  (D) All the above 

Last Answer : (D) All the above 

Description : A cantilever carrying a uniformly distributed load W over its full length is propped at its free end such that it is at the level of the fixed end. The bending moment will be zero at its free end also at ... point of the cantilever (C) 1/4th length from free end (D) 3/4th length from free end

Last Answer : (D) 3/4th length from free end

Description : In a simply supported beam (l + 2a) with equal overhangs (a) and carrying a uniformly distributed load over its entire length, B.M. at the middle point of the beam will be zero if (A) l = 2a (B) l = 4a (C) l < 2a (D) l > a

Last Answer : (A) l = 2a

Description : Pick up the correct statement from the following:  (A) For a uniformly distributed load, the shear force varies linearly  (B) For a uniformly distributed load, B.M. curve is a parabola  (C) For a load varying linearly, the shear force curve is a parabola  (D) All the above 

Last Answer : (D) All the above 

Description : Shear force for a cantilever carrying a uniformly distributed load over its length, is  (A) Triangle  (B) Rectangle  (C) Parabola  (D) Cubic parabola 

Last Answer : (B) Rectangle 

Description : The shape of the bending moment diagram over the length of a beam, carrying a uniformly  distributed load is always  (A) Linear  (B) Parabolic  (C) Cubical  (D) Circular

Last Answer : (B) Parabolic 

Description : Connecting rod of two stroke engine is subjected to A. Compressive load B. Tensile load C. Both compressive and tensile load D. None of the above

Last Answer : A. Compressive load

Description : Connecting rod of four stroke engine is subjected to A. Compressive load B. Tensile load C. Both compressive and tensile load D. None of the above

Last Answer : C. Both compressive and tensile load

Description : The underground sewers are more subjected to A. Tensile force B. Compressive force C. Bending force D. Shearing force

Last Answer : ANS: B

Description : When the helical compression spring is subjected to axial compressive force, the type of stress induced in the spring wire is, (A) Tensile stress (B) Compressive stress (C) Bending stress (D) Torsional shear stress

Last Answer : (D) Torsional shear stress

Description : When the helical extension spring is subjected to axial tensile force, the type of stress induced in the spring wire is, (A) Tensile stress (B) Compressive stress (C) Bending stress (D) Torsional shear stress

Last Answer : (D) Torsional shear stress

Description : A member which is subjected to reversible tensile or compressive stress may fail at a stress lower  than the ultimate stress of the material. This property of metal, is called  (A) Plasticity of the ... ) Elasticity of the metal  (C) Fatigue of the metal  (D) Workability of the metal

Last Answer : (C) Fatigue of the metal

Description : A cast iron T section beam is subjected to pure bending. For maximum compressive stress to be  three times the maximum tensile stress, centre of gravity of the section from flange side is  (A) h/4  (B) h/3  (C) h/2  (D) 2/3 h

Last Answer : (A) h/4 

Description : In prestressed concrete members, the shear force depends upon (a) Distributed load (b) Torsion (c) Concentrated load (d) Variation in net bending moment

Last Answer : (d) Variation in net bending moment

Description : A thin spherical shell under internal pressure will fail under a. Maximum shear stress b. Principal compressive stress c. Principal tensile stress d. None

Last Answer : c. Principal tensile stress

Description : A rolled steel joist is simply supported at its ends and carries a uniformly distributed load which  causes a maximum deflection of 10 mm and slope at the ends of 0.002 radian. The length of the  joist will be,  (A) 10 m  (B) 12 m  (C) 14 m  (D) 16 m 

Last Answer : (D) 16 m 

Description : A simply supported rolled steel joist 8 m long carries a uniformly distributed load over it span so  that the maximum bending stress is 75 N/mm². If the slope at the ends is 0.005 radian and the  value of E = 0.2 ... joist, is  (A) 200 mm  (B) 250 mm  (C) 300 mm  (D) 400 mm 

Last Answer : (D) 400 mm 

Description : The maximum bending moment for a simply supported beam with a uniformly distributed  load w/unit length, is  (A) WI/2  (B) WI²/4  (C) WI²/8  (D) WI²/12

Last Answer : (C) WI²/8 

Description : A simply supported beam which carries a uniformly distributed load has two equal overhangs. To  have maximum B.M. produced in the beam least possible, the ratio of the length of the overhang  to the total length of the beam, is  (A) 0.207  (B) 0.307  (C) 0.407  (D) 0.508 

Last Answer : (A) 0.207 

Description : The maximum deflection due to a uniformly distributed load w/unit length over entire span of a  cantilever of length l and of flexural rigidly EI, is  (A) wl3 /3EI (B) wl4 /3EI (C) wl4 /8EI (D) wl4 /12E

Last Answer : (C) wl4 /8EI

Description : A simply supported beam A carries a point load at its mid span. Another identical beam B carries  the same load but uniformly distributed over the entire span. The ratio of the maximum  deflections of the beams A and B, will be  (A) 2/3  (B) 3/2  (C) 5/8  (D) 8/5 

Last Answer : (D) 8/5 

Description : When a uniformly distributed load, shorter than the span of the girder, moves from left to right, then the conditions for maximum bending moment at a section is that (A) The head of the load ... position should be such that the section divides the load in the same ratio as it divides the span

Last Answer : (D) The load position should be such that the section divides the load in the same ratio as it divides the span

Description : When a uniformly distributed load, longer than the span of the girder, moves from left to right, then the maximum bending moment at mid section of span occurs when the uniformly distributed load occupies (A) Less ... (B) Whole of left half span (C) More than the left half span (D) Whole span

Last Answer : (D) Whole span

Description : The ratio of the maximum deflection of a cantilever beam with an isolated load at its free end and with a uniformly distributed load over its entire length, is (A) 1 (B) 24/15 (C) 3/8 (D) 8/3

Last Answer : (D) 8/3

Description : For a simply supported beam carrying uniformly distributed load W on it entire length L, the maximum bending moment is (A) WL/4 (B) WL/8 (C) WL/2 (D) WL/3

Last Answer : (B) WL/8

Description : The number of points of contraflexure in a simple supported beam carrying uniformly distributed load, is (A) 0 (B) 1 (C) 2 (D) 3

Last Answer : (A) 0

Description : A simply supported beam of span carries a uniformly distributed load . The maximum bending moment is (A) WL/2 (B) WL/4 (C) WL/8 (D) WL/12

Last Answer : (C) WL/8

Description : A simply supported beam carrying a uniformly distributed load over its whole span, is propped at  the centre of the span so that the beam is held to the level of the end supports. The reaction of  ... B) 3/8th the distributed load  (C) 5/8th the distributed load  (D) Distributed load 

Last Answer : (C) 5/8th the distributed load