Calculate the Green’s value for the functions F = y 2 and G = x 2 for the region x = 1 and
y = 2 from origin.
a) 0
b) 2
c) -2
d) 1

1 Answer

Answer :

c) -2

Related questions

Description : Find the value of Green’s theorem for F = x 2 and G = y 2 is a) 0 b) 1 c) 2 d) 3

Last Answer : a) 0

Description : If two functions A and B are discrete, their Green’s value for a region of circle of radius a in the positive quadrant is a) ∞ b) -∞ c) 0 d) Does not exist

Last Answer : d) Does not exist

Description : If a function is described by F = (3x + z, y 2 − sin x 2 z, xz + ye x5 ), then the divergence theorem value in the region 0

Last Answer : c) 39

Description : Mathematically, the functions in Green’s theorem will be a) Continuous derivatives b) Discrete derivatives c) Continuous partial derivatives d) Discrete partial derivatives

Last Answer : c) Continuous partial derivatives

Description : The divergence theorem value for the function x 2 + y 2 + z 2 at a distance of one unit from the origin is a) 0 b) 1 c) 2 d) 3

Last Answer : d) 3

Description : Calculate the charge density for the current density given 20sin x i + ycos z j at the origin. a) 20t b) 21t c) 19t d) -20t

Last Answer : b) 21t

Description : The Ampere law is based on which theorem? a) Green’s theorem b) Gauss divergence theorem c) Stoke’s theorem d) Maxwell theorem

Last Answer : c) Stoke’s theorem

Description : The Shoelace formula is a shortcut for the Green’s theorem. State True/False. a) True b) False

Last Answer : a) True

Description : The Green’s theorem can be related to which of the following theorems mathematically? a) Gauss divergence theorem b) Stoke’s theorem c) Euler’s theorem d) Leibnitz’s theorem

Last Answer : b) Stoke’s theorem

Description : Applications of Green’s theorem are meant to be in a) One dimensional b) Two dimensional c) Three dimensional d) Four dimensional

Last Answer : b) Two dimensional

Description : Which of the following is not an application of Green’s theorem? a) Solving two dimensional flow integrals b) Area surveying c) Volume of plane figures d) Centroid of plane figures

Last Answer : c) Volume of plane figures

Description : Which of the following theorem convert line integral to surface integral? a) Gauss divergence and Stoke’s theorem b) Stoke’s theorem only c) Green’ s theorem only d) Stoke’s and Green’s theorem

Last Answer : d) Stoke’s and Green’s theorem

Description : Which of the following theorem use the curl operation? a) Green’s theorem b) Gauss Divergence theorem c) Stoke’s theorem d) Maxwell equation

Last Answer : b) Gauss Divergence theorem

Description : Find the area of a right angled triangle with sides of 90 degree unit and the functions described by L = cos y and M = sin x. a) 0 b) 45 c) 90 d) 180

Last Answer : d) 180

Description : Find the Gauss value for a position vector in Cartesian system from the origin to one unit in three dimensions. a) 0 b) 3 c) -3 d) 1

Last Answer : b) 3

Description : Given the vector potential is 16 – 12sin y j. Find the field intensity at the origin. a) 28 b) 16 c) 12 d) 4

Last Answer : c) 12

Description : Find the divergence of the vector F= xe -x i + y j – xz k a) (1 – x)(1 + e -x ) b) (x – 1)(1 + e -x ) c) (1 – x)(1 – e) d) (x – 1)(1 – e)

Last Answer : a) (1 – x)(1 + e -x )

Description : Calculate the phase constant of a dielectric with frequency 6 x 10 6 in air. a) 2 b) 0.2 c) 0.02 d) 0.002

Last Answer : c) 0.02

Description : Calculate the velocity of a wave with frequency 2 x10 9 rad/s and phase constant of 4 x 10 8 units. a) 0.5 b) 5 c) 0.2 d) 2

Last Answer : b) 5

Description : Calculate the reluctance of a material with length 2π x 10 -4 in air with area 0.5. a) 1 b) 10 c) 100 d) 1000

Last Answer : d) 1000

Description : Find the divergence theorem value for the function given by (e z , sin x, y 2 ) a) 1 b) 0 c) -1 d) 2

Last Answer : b) 0

Description : Find the Laplace equation value of the following potential field V = x 2 – y 2 + z 2 a) 0 b) 2 c) 4 d) 6

Last Answer : b) 2

Description : Find the value of divergence theorem for the field D = 2xy i + x 2 j for the rectangular parallelepiped given by x = 0 and 1, y = 0 and 2, z = 0 and 3. a) 10 b) 12 c) 14 d) 16

Last Answer : b) 12

Description : Find the value of divergence theorem for the field D = 2xy i + x 2 j for the rectangular parallelepiped given by x = 0 and 1, y = 0 and 2, z = 0 and 3. a) 10 b) 12 c) 14 d) 16

Last Answer : b) 12

Description : Find the value of divergence theorem for A = xy 2 i + y 3 j + y 2 z k for a cuboid given by 0

Last Answer : c) 5/3

Description : A point charge 2nC is located at origin. What is the potential at (1,0,0)? a) 12 b) 14 c) 16 d) 18

Last Answer : d) 18

Description : Calculate the velocity of wave propagation in a conductor with frequency 5 x 10 8 rad/s and phase constant of 3 x 10 8 units. a) 3/5 b) 15 c) 5/3 d) 8

Last Answer : c) 5/3

Description : Calculate the Larmer angular frequency for a magnetic flux density of 12.34 x 10 -10 . a) 108.36 b) 810.63 c) 368.81 d) 183.36

Last Answer : a) 108.36

Description : Calculate the skin depth of a conductor, having a conductivity of 200 units. The wave frequency is 10 GHz in air. a) 355.8 b) 3.558 c) 35.58 d) 0.3558

Last Answer : a) 355.8

Description : Calculate the transmission coefficient of a wave with a reflection coefficient of 0.6 a) 0.6 b) 1 c) 0 d) 0.4

Last Answer : d) 0.4

Description : Calculate the ratio of sine of incident angle to the sine of reflected angle when the refractive indices of medium 1 and 2 are given as 2.33 and 1.66 respectively. a) 0.71 b) 1.4 c) 2 d) 3.99

Last Answer : a) 0.71

Description : Calculate the phase constant of a conductor with attenuation constant given by 0.04 units. a) 0.02 b) 0.08 c) 0.0016 d) 0.04

Last Answer : d) 0.04

Description : Calculate the wavelength of the wave with phase constant of 3.14 units. a) 1 b) 2 c) 0.5 d) 4

Last Answer : b) 2

Description : Calculate the skin depth of a material with attenuation constant of 2 units. a) 2 b) 1 c) 0.5 d) 4

Last Answer : c) 0.5

Description : Calculate the phase constant of a wave with frequency 12 rad/s and velocity 3×10 8 m/s(in 10 -8 order) a) 0.5 b) 72 c) 4 d) 3

Last Answer : c) 4

Description : Calculate the conduction density of a material with resistivity of 0.02 units and electric intensity of 12 units. a) 300 b) 600 c) 50 d) 120

Last Answer : b) 600

Description : Calculate the emf of a material having flux density 5sin t in an area of 0.5 units. a) 2.5 sin t b) -2.5 cos t c) -5 sin t d) 5 cos t

Last Answer : d) 5 cos t

Description : Calculate the reluctance of the material with a mmf of 3.5 units and flux of 7units. a) 32.5 b) 10.5 c) 0.5 d) 2

Last Answer : b) 10.5

Description : Calculate the magnetization of a material with susceptibility of 50 and field intensity of 0.25 units. a) 12.5 b) 25 c) 75 d) 37.5

Last Answer : a) 12.5

Description : Calculate the flux density due to a circular conductor of radius 100nm and current 5A in air. a) 10 b) 100 c) 0.1 d) 1

Last Answer : a) 10

Description : Calculate the magnetic moment when a field of B= 51 units is subjected to a torque of 20 units. a) 0.39 b) 4.2 c) 2.55 d) 3.21

Last Answer : a) 0.39

Description : Calculate the emf when a coil of 100 turns is subjected to a flux rate of 0.3 tesla/sec. a) 3 b) 30 c) -30 d) -300

Last Answer : c) -30

Description : Calculate the electric field intensity of a line charge of length 2m and potential 24V. a) 24 b) 12 c) 0.083 d) 12.67

Last Answer : b) 12

Description : Calculate the capacitance of two parallel plates of area 2 units separated by a distance of 0.2m in air(in picofarad) a) 8.84 b) 88.4 c) 884.1 d) 0.884

Last Answer : b) 88.4

Description : Calculate the polarisation vector of the material which has 100 dipoles per unit volume in a volume of 2 units. a) 200 b) 50 c) 400 d) 0.02

Last Answer : a) 200

Description : Calculate the displacement current density when the electric flux density is 20sin 0.5t. a) 10sin 0.5t b) 10cos 0.5t c) 20sin 2t d) 20cos 2t

Last Answer : b) 10cos 0.5t

Description : Calculate the convection current when electron density of 200 units is travelling at a speed of 12m/s. a) 16.67 b) 2400 c) 2880 d) 0.0

Last Answer : b) 2400

Description : The bound charge density and free charge density are 12 and 6 units respectively. Calculate the susceptibility. a) 1 b) 0 c) 2 d) 72

Last Answer : c) 2

Description : Calculate the dipole moment of a dipole with equal charges 2C and -2C separated by a distance of 2cm. a) 0.02 b) 0.04 c) 0.06 d) 0.08

Last Answer : b) 0.04

Description : Given E = 40xyi + 20x 2 j + 2k. Calculate the potential between two points (1,-1,0) and (2,1,3). a) 105 b) 106 c) 107 d) 108

Last Answer : b) 106