Find the area of a right angled triangle with sides of 90 degree unit and the functions
described by L = cos y and M = sin x.
a) 0
b) 45
c) 90
d) 180

1 Answer

Answer :

d) 180

Related questions

Description : In right triangle ABC, right angled at C, if tan A = 1, then the value of 2 sin A cos A is (a) 0 (b) 1 (c) – 1 (d) 2

Last Answer : (b) 1

Description : Identify the polarisation of the wave given, Ex = cos wt and Ey = sin wt. The phase difference is -90 0 . a) Left hand circularly polarised b) Right hand circularly polarised c) Left hand elliptically polarised d) Right hand elliptically polarised

Last Answer : b) Right hand circularly polarised

Description : Identify the polarisation of the wave given, Ex = 2 cos wt and Ey = 2 sin wt. The phase difference is +90 0 . a) Left hand circularly polarised b) Right hand circularly polarised c) Left hand elliptically polarised d) Right hand elliptically polarised

Last Answer : a) Left hand circularly polarised

Description : Identify the polarisation of the wave given, Ex = 2 cos wt and Ey = sin wt. The phase difference is -90 0 . a) Left hand circularly polarised b) Right hand circularly polarised c) Left hand elliptically polarised d) Right hand elliptically polarised

Last Answer : d) Right hand elliptically polarised

Description : Identify the polarisation of the wave given, Ex = Exo cos wt and Ey = Eyo sin wt. The phase difference is +90 0 . a) Left hand circularly polarised b) Right hand circularly polarised c) Left hand elliptically polarised d) Right hand elliptically polarised

Last Answer : c) Left hand elliptically polarised

Description : Given D = e -x sin y i – e -x cos y j Find divergence of D. a) 3 b) 2 c) 1 d) 0

Last Answer : d) 0

Description : If a function is described by F = (3x + z, y 2 − sin x 2 z, xz + ye x5 ), then the divergence theorem value in the region 0

Last Answer : c) 39

Description : Find the gradient of the function sin x + cos y. a) cos x i – sin y j b) cos x i + sin y j c) sin x i – cos y j d) sin x i + cos y j

Last Answer : a) cos x i – sin y j

Description : Calculate the emf of a material having flux density 5sin t in an area of 0.5 units. a) 2.5 sin t b) -2.5 cos t c) -5 sin t d) 5 cos t

Last Answer : d) 5 cos t

Description : Find the electric field when the magnetic field is given by 2sin t in air. a) 8π x 10 -7 cos t b) 4π x 10 -7 sin t c) -8π x 10 -7 cos t d) -4π x 10 -7 sin t

Last Answer : a) 8π x 10 -7 cos t

Description : If the length of hypotenuse of a right angled triangle is 5 cm and its area is 6 sq cm, then what are the lengths of the remaining sides? -Maths 9th

Last Answer : Let one of the remaining sides be x cm.Then, other side = \(\sqrt{5^2-x^2}\) cm∴ Area = \(rac{1}{2} imes{x} imes\sqrt{25-x^2}\) = 6⇒ \(x\sqrt{25-x^2}\) = 12 ⇒ x2(25 - x2) = 144⇒ 25x2 - x4 = 144 ⇒ x4 - 25x2 ... (x2 - 16) (x2 - 9) = 0 ⇒ x2 = 16 or x2 = 9 ⇒ x = 4 or 3∴ The two sides are 4 cm and 3 cm.

Description : If A is the area of the right angled triangle and b is one of the sides containing the right angle, then what is the length of the -Maths 9th

Last Answer : answer:

Description : The negative sign in expression ɛ= -vBL shows that the angle between the direction of L and (v x B) is: a. 90 b. 180 c. 45 d. 0

Last Answer : a. 90

Description : The Snell’s law is given by a) N1 sin θi = N2 sin θt b) N2 sin θi = N1 sin θt c) sin θi = sin θt d) N1 cos θi = N2 cos θt

Last Answer : a) N1 sin θi = N2 sin θt

Description : Numerical aperture is expressed as the a) NA = sin θa b) NA = cos θa c) NA = tan θa d) NA = sec θa

Last Answer : a) NA = sin θa

Description : The torque expression of a current carrying conductor is a) T = BIA cos θ b) T = BA cos θ c) T = BIA sin θ d) T = BA sin θ

Last Answer : c) T = BIA sin θ

Description : The angle at which the wave must be transmitted in air media if the angle of reflection is 45 degree is a) 45 b) 30 c) 60 d) 90

Last Answer : a) 45

Description : Is it possible for a right angled triangle with sides 3 and 4 units long to have a hypotenuse 6 units in length?

Last Answer : answer:I'm not quite getting you. It isn't actually a triangle when the hypotenuse has these indentations, right? The hypotenuse isn't a straight line as you describe it. If the other sides are 3 ... and 5.00001, you don't have a straight line. Unless I'm misunderstanding what you're suggesting.

Description : The hypotenuse of an isosceles right-angled triangle is q. If we describe equilateral triangles (outwards) on all its three sides, -Maths 9th

Last Answer : (b) \(rac{q^2}{4}\) (2√3 + 1).AC = q, ∠ABC = 90º ⇒ q = \(\sqrt{AB^2+BC^2}\)⇒ q = \(\sqrt{2x^2}\)⇒ q2 = 2x2 ⇒ \(x\) = \(rac{q}{\sqrt2}\)∴ Area of the re-entrant hexagon = Sum of areas of (ΔABC + ΔADC ... (rac{\sqrt3}{4}\)q2 + \(rac{\sqrt3}{8}\)q2 + \(rac{\sqrt3q^2}{8}\) = \(rac{q^2}{4}\) (2√3 + 1).

Description : Let a, b, c be the lengths of the sides of a right angled triangle, the hypotenuse having the length c, then a + b is -Maths 9th

Last Answer : answer:

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the differential equation for damped free vibrations having single degree of freedom. What will be the solution to this differential equation if the system is ... Φ) C x = (A - Bt) e - ωt D x = X e - ξωt (cos ω d t + Φ)

Last Answer : A x = (A + Bt) e – ωt

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the differential equation for damped free vibrations having single degree of freedom. What will be the solution to this differential equation if the system is ... ) C. x = (A - Bt) e - ωt D. x = X e - ξωt (cos ω d t + Φ

Last Answer : A. x = (A + Bt) e – ωt

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the A differential equation for damped free vibrations having single degree of freedom. What will be the solution to this differential equation if the system is ... (C)x = (A - Bt) e - ωt ( D )x = X e - ξωt (cos ω d t + Φ

Last Answer : ( A ) x = (A + Bt) e – ωt

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the differential equati damped free vibrations having single degree of freedom. What will be the solution to this differ equation if the system is critically ... c. x = (A - Bt) e - ωt d. x = X e - ξωt (cos ω d t + Φ)

Last Answer : a. x = (A + Bt) e – ωt

Description : What is the relationship in degrees of the electrostatic and electromagnetic fields of an antenna? A. 0 degree B. 45 degrees C. 90 degrees D. 180 degrees

Last Answer : C. 90 degrees

Description : Find the current density on the conductor surface when a magnetic field H = 3cos x i + zcos x j A/m, for z>0 and zero, otherwise is applied to a perfectly conducting surface in xy plane. a) cos x i b) –cos x i c) cos x j d) –cos x j

Last Answer : b) –cos x i

Description : Find the divergence theorem value for the function given by (e z , sin x, y 2 ) a) 1 b) 0 c) -1 d) 2

Last Answer : b) 0

Description : In a general two dimensional stress system, planes of maximum shear stress are inclined at ___ with principal planes. a. 90 degree b. 180 degree c. 45 degree d. 60 degree

Last Answer : c. 45 degree

Description : Principal planes are mutually inclined at a. 45 degree b. 60 degree c. 90 degree d. 180 degree

Last Answer : c. 90 degree

Description : Find the acceptance angle of a material which has a numerical aperture of 0.707 in air. a) 30 b) 60 c) 45 d) 90

Last Answer : c) 45

Description : In perfect conductors, the phase shift between the electric field and magnetic field will be a) 0 b) 30 c) 45 d) 90

Last Answer : c) 45

Description : In lossy dielectric, the phase difference between the electric field E and the magnetic field H is a) 90 b) 60 c) 45 d) 0

Last Answer : d) 0

Description : Find the loss angle in degrees when the loss tangent is 1. a) 0 b) 30 c) 45 d) 90

Last Answer : c) 45

Description : In an electromagnetic wave, what is the relative orientation of the magnetic and electric fields? w) 180 degrees x) 90 degrees y) 45 degrees z) 22.5 degrees

Last Answer : ANSWER: X -- 90 DEGREES

Description : If cosec |-sin |=l and sec |- cos |=m, prove that l2m2(l2+m2+3)=1 -Maths 9th

Last Answer : cosec(A) - sin(A) = l ⇒ 1/sin(A) - sin(A) = l ⇒ l² = 1/sin²(A) + sin²(A) - 2 --------- sec(A) - cos(A) = m ⇒ 1/cos(A) - cos(A) = m ⇒ m² = 1/cos²(A) + cos²(A) - 2 ---------- l²m² = [1/sin²(A) + ... A)) = = 1/(sin²(A)cos²(A)) ------------- ⇒ l²m² (l² + m² + 3) = sin²(A)cos²(A) / [sin²(A)cos²(A)] = 1

Description : Find the curl of A = (y cos ax)i + (y + e x )k a) 2i – ex j – cos ax k b) i – ex j – cos ax k c) 2i – ex j + cos ax k d) i – ex j + cos ax k

Last Answer : b) i – ex j – cos ax k

Description : The function V = e x sin y + z does not satisfy Laplace equation. State True/False. a) True b) False

Last Answer : b) False

Description : ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that (i) D is the mid-point of AC (ii) MD ⊥ AC (iii) CM = MA = ½ AB -Maths 9th

Last Answer : Solution: (i) In ΔACB, M is the midpoint of AB and MD || BC , D is the midpoint of AC (Converse of mid point theorem) (ii) ∠ACB = ∠ADM (Corresponding angles) also, ∠ACB = 90° , ∠ADM = 90° and MD ⊥ AC (iii ... SAS congruency] AM = CM [CPCT] also, AM = ½ AB (M is midpoint of AB) Hence, CM = MA = ½ AB

Description : ABC is a triangle right-angled at C. A line through the mid-point M of hypotenuse AB parallel to BC intersects AC ad D. -Maths 9th

Last Answer : Given: A △ABC , right - angled at C. A line through the mid - point M of hypotenuse AB parallel to BC intersects AC at D. To Prove: (i) D is the mid - point of AC (ii) MD | AC (iii) CM = MA = 1 / 2 ... congruence axiom] ⇒ AM = CM Also, M is the mid - point of AB [given] ⇒ CM = MA = 1 / 2 = AB.

Description : ABC is a triangle right-angled at C. A line through the mid-point M of hypotenuse AB parallel to BC intersects AC ad D. -Maths 9th

Last Answer : Given: A △ABC , right - angled at C. A line through the mid - point M of hypotenuse AB parallel to BC intersects AC at D. To Prove: (i) D is the mid - point of AC (ii) MD | AC (iii) CM = MA = 1 / 2 ... congruence axiom] ⇒ AM = CM Also, M is the mid - point of AB [given] ⇒ CM = MA = 1 / 2 = AB.

Description : A city has a park shaped as a right angled triangle. The length of the longest side of this park is 80 m. The Mayor of the city -Maths 9th

Last Answer : answer:

Description : Find the angle at which the torque is minimum. a) 30 b) 45 c) 60 d) 90

Last Answer : d) 90

Description : In good conductors, the electric and magnetic fields will be a) 45 in phase b) 45 out of phase c) 90 in phase d) 90 out of phase

Last Answer : b) 45 out of phase

Description : Using the rule for differentiation for quotient of two functions, prove that d/dx (sin x/cos x) = sec^2 x

Last Answer : Using the rule for differentiation for quotient of two functions, prove that d/dx (sin x/cos x) = sec2x

Description : Obtain derivatives of the following functions: (i) x sin x (ii) x^4 + cos x (iii) x/sin x

Last Answer : Obtain derivatives of the following functions: (i) x sin x (ii) x4 + cos x (iii) x/sin x

Description : The base of a right-angled triangle measures 4 cm and its hypotenuse measures 5 cm. Find the area of the triangle. -Maths 9th

Last Answer : In right-angled triangle ABC AB2 + BC2 = AC2 (By Pythagoras Theorem) ⇒ AB2 + 42 = 52 ⇒ AB2 = 25 – 16 = 9 5 cm ⇒ AB = 3 cm ∴ Area of △ABC = 1/2 BC x AB = 1/2 x 4 x 3 = 6cm2

Description : Calculate the Green’s value for the functions F = y 2 and G = x 2 for the region x = 1 and y = 2 from origin. a) 0 b) 2 c) -2 d) 1

Last Answer : c) -2

Description : Given that sin A=1/2 and cos B=1/√2 then the value of (A + B) is: (a)30 (b)45 (c)75 (d)60

Last Answer : (c)75

Description : The angle of incidence of a wave of a wave with angle of transmission 45 degree and the refractive indices of the two media given by 2 and 1.3 is a) 41.68 b) 61.86 c) 12.23 d) 27.89

Last Answer : a) 41.68

Description : Find the Laplace equation value of the following potential field V = r cos θ + φ a) 3 b) 2 c) 1 d) 0

Last Answer : d) 0