If two functions A and B are discrete, their Green’s value for a region of circle of
radius a in the positive quadrant is
a) ∞
b) -∞
c) 0
d) Does not exist

1 Answer

Answer :

d) Does not exist

Related questions

Description : Mathematically, the functions in Green’s theorem will be a) Continuous derivatives b) Discrete derivatives c) Continuous partial derivatives d) Discrete partial derivatives

Last Answer : c) Continuous partial derivatives

Description : Calculate the Green’s value for the functions F = y 2 and G = x 2 for the region x = 1 and y = 2 from origin. a) 0 b) 2 c) -2 d) 1

Last Answer : c) -2

Description : Find the magnetic field when a circular conductor of very high radius is subjected to a current of 12A and the point P is at the centre of the conductor. a) 1 b) ∞ c) 0 d) -∞

Last Answer : c) 0

Description : Find the value of Green’s theorem for F = x 2 and G = y 2 is a) 0 b) 1 c) 2 d) 3

Last Answer : a) 0

Description : The potential due to the dipole on the midpoint of the two charges will be a) 0 b) Unity c) ∞ d) -∞

Last Answer : a) 0

Description : Find the potential due the dipole when the angle subtended by the two charges at the point P is perpendicular. a) 0 b) Unity c) ∞ d) -∞

Last Answer : a) 0

Description : The standing wave ratio of short circuited and open circuited lines will be a) 0 b) 1 c) -1 d) ∞

Last Answer : d) ∞

Description : For matched line, the standing wave ratio will be a) 0 b) ∞ c) -1 d) 1

Last Answer : d) 1

Description : The range of the standing wave ratio is a) 0 < S < 1 b) -1 < S < 1 c) 1 < S < ∞ d) 0 < S < ∞

Last Answer : c) 1 < S < ∞

Description : The attenuation constant in lossless dielectrics will be a) 0 b) 1 c) -1 d) ∞

Last Answer : a) 0

Description : At dc field, the displacement current density will be a) 0 b) 1 c) Jc d) ∞

Last Answer : a) 0

Description : Find the magnetic flux density when the vector potential is a position vector. a) 1 b) 0 c) -1 d) ∞

Last Answer : b) 0

Description : The divergence of H will be a) 1 b) -1 c) ∞ d) 0

Last Answer : d) 0

Description : When the rotational path of the magnetic field intensity is zero, then the current in the path will be a) 1 b) 0 c) ∞ d) 0.5

Last Answer : b) 0

Description : The charge within a conductor will be a) 1 b) -1 c) 0 d) ∞

Last Answer : c) 0

Description : The susceptibility of free space is a) 1 b) 0 c) 2 d) ∞

Last Answer : b) 0

Description : The potential in a lamellar field is a) 1 b) 0 c) -1 d) ∞

Last Answer : b) 0

Description : A circle is represented by center point [5,5] and radius 6 units. Find the parametricequation of circle and determine the various points on circle in first quadrant if increment in angle by 45o a.9.24,9.24 b.9.42,9.42 c.9,9 d.11,5

Last Answer : a.9.24,9.24

Description : Find the equation of the circle which touches the both axes in first quadrant and whose radius is a. -Maths 9th

Last Answer : circle of radius a touches both axis in 1st quadrant so its centre will be (a,a). ∴ Required equation ⇒(x−a)2+(y−a)2=a2 ⇒x2+a2−2ax+y2+a2−2ay=a2 ⇒x2+y2−2ax−2ay+2a2−a2=0 ⇒x2−y2−2ax−2ay+a2=0.

Description : Find the equation of the circle which touches the both axes in first quadrant and whose radius is a. -Maths 9th

Last Answer : Given that the circle of radius ‘a’ touches both axis. So, its centre is (a, a) So, the equation of required circles is : (x-a)2 + (y-a)2 = a2 ⇒ x2 - 2ax + a2+y2 - 2ay + a2 = a2 ⇒ x2 + y2 - 2ax - 2ay + a2 = 0

Description : In the given figure, OACB is a quadrant of a circle of radius 7 cm. The perimeter of the quadrant is (a) 11 cm (b) 18 cm (c) 25 cm (d) 36 cm

Last Answer : (c) 25 cm

Description : Applications of Green’s theorem are meant to be in a) One dimensional b) Two dimensional c) Three dimensional d) Four dimensional

Last Answer : b) Two dimensional

Description : Which of the following is not an application of Green’s theorem? a) Solving two dimensional flow integrals b) Area surveying c) Volume of plane figures d) Centroid of plane figures

Last Answer : c) Volume of plane figures

Description : The Ampere law is based on which theorem? a) Green’s theorem b) Gauss divergence theorem c) Stoke’s theorem d) Maxwell theorem

Last Answer : c) Stoke’s theorem

Description : The Shoelace formula is a shortcut for the Green’s theorem. State True/False. a) True b) False

Last Answer : a) True

Description : The Green’s theorem can be related to which of the following theorems mathematically? a) Gauss divergence theorem b) Stoke’s theorem c) Euler’s theorem d) Leibnitz’s theorem

Last Answer : b) Stoke’s theorem

Description : Which of the following theorem convert line integral to surface integral? a) Gauss divergence and Stoke’s theorem b) Stoke’s theorem only c) Green’ s theorem only d) Stoke’s and Green’s theorem

Last Answer : d) Stoke’s and Green’s theorem

Description : Which of the following theorem use the curl operation? a) Green’s theorem b) Gauss Divergence theorem c) Stoke’s theorem d) Maxwell equation

Last Answer : b) Gauss Divergence theorem

Description : When a material has zero permittivity, the maximum potential that it can possess is a) ∞ b) -∞ c) Unity d) Zero

Last Answer : d) Zero

Description : For a test charge placed at infinity, the electric field will be a) Unity b) +∞ c) Zero d) -∞

Last Answer : c) Zero

Description : If a function is described by F = (3x + z, y 2 − sin x 2 z, xz + ye x5 ), then the divergence theorem value in the region 0

Last Answer : c) 39

Description : Compute the capacitance between two concentric shells of inner radius 2m and the outer radius is infinitely large. a) 0.111 nF b) 0.222 nF c) 4.5 nF d) 5.4 nF

Last Answer : b) 0.222 nF

Description : The inductance of a coaxial cable with inner radius a and outer radius b, from a distance d, is given by a) L = μd ln(b/a)/2π b) L = 2π μd ln(b/a) c) L = πd/ln(b/a) d) L = 0

Last Answer : a) L = μd ln(b/a)/2π

Description : Calculate the flux density due to a circular conductor of radius 100nm and current 5A in air. a) 10 b) 100 c) 0.1 d) 1

Last Answer : a) 10

Description : Find the magnetic field intensity at the radius of 6cm of a coaxial cable with inner and outer radii are 1.5cm and 4cm respectively. The current flowing is 2A. a) 2.73 b) 3.5 c) 0 d) 1.25

Last Answer : c) 0

Description : Find the magnetic flux density when a point from a finite current length element of current 0.5A and radius 100nm. a) 0 b) 0.5 c) 1 d) 2

Last Answer : c) 1

Description : A circular disc of radius 5m with a surface charge density ρs = 10sinφ is enclosed by surface. What is the net flux crossing the surface? a) 3 b) 2 c) 1 d) 0

Last Answer : d) 0

Description : Find the flux density of line charge of radius (cylinder is the Gaussian surface) 2m and charge density is 3.14 units? a) 1 b) 0.75 c) 0.5 d) 0.25

Last Answer : d) 0.25

Description : Find the area of a right angled triangle with sides of 90 degree unit and the functions described by L = cos y and M = sin x. a) 0 b) 45 c) 90 d) 180

Last Answer : d) 180

Description : Find the electric flux density of a material whose charge density is given by 12 units in a volume region of 0.5 units. a) 12 b) 24 c) 6 d) 48

Last Answer : c) 6

Description : Find the magnetic field intensity due to an infinite sheet of current 5A and charge density of 12j units in the positive y direction and the z component is below the sheet. a) 6 b) 0 c) -6 d) 60k

Last Answer : c) -6

Description : Which components exist in an electromagnetic wave? a) Only E b) Only H c) Both E and H d) Neither E or H

Last Answer : c) Both E and H

Description : Which of the following is true regarding magnetic lines of force? a) Real b) Imaginary c) Does not exist d) Parallel to field

Last Answer : b) Imaginary

Description : For conductors, the free electrons will exist at a) Valence band b) Middle of valence and conduction band c) Will not exist d) Conduction band

Last Answer : d) Conduction band

Description : The potential difference in an open circuit is a) Zero b) Unity c) Infinity d) Circuit does not exist open

Last Answer : c) Infinity

Description : Choose which of following condition is not required for a waveguide to exist. a) The dimensions should be in accordance with desired frequency b) Cut-off frequency should be minimum 6GHz c) The shape should be spherical d) No specific condition is required for waveguide design

Last Answer : c) The shape should be spherical

Description : The power of a wave in a cylindrical waveguide of radius 2m with electric field 12 units is a) 2.39 b) 3.92 c) 9.23 d) 9.32

Last Answer : a) 2.39

Description : Find the orbital angular moment of a dipole with angular velocity of 1.6m/s and radius 35cm(in 10-31 order) a) 1.78 b) 8.71 c) 7.18 d) 2.43

Last Answer : a) 1.78

Description : Find the orbital dipole moment in a field of dipoles of radius 20cm and angular velocity of 2m/s(in 10 -22 order) a) 64 b) 76 c) 54 d) 78

Last Answer : a) 64

Description : Find the flux density of a conductor in the square of the centre of the loop having current 3.14A and radius is 1.414m in air. a) 8π x 10 -7 b) 4π x 10 -7 c) 6π x 10 -7 d) 2π x 10 -7

Last Answer : c) 6π x 10 -7