The charge within a conductor will be
a) 1
b) -1
c) 0
d) ∞

1 Answer

Answer :

c) 0

Related questions

Description : Find the magnetic field when a circular conductor of very high radius is subjected to a current of 12A and the point P is at the centre of the conductor. a) 1 b) ∞ c) 0 d) -∞

Last Answer : c) 0

Description : For a test charge placed at infinity, the electric field will be a) Unity b) +∞ c) Zero d) -∞

Last Answer : c) Zero

Description : The standing wave ratio of short circuited and open circuited lines will be a) 0 b) 1 c) -1 d) ∞

Last Answer : d) ∞

Description : For matched line, the standing wave ratio will be a) 0 b) ∞ c) -1 d) 1

Last Answer : d) 1

Description : The range of the standing wave ratio is a) 0 < S < 1 b) -1 < S < 1 c) 1 < S < ∞ d) 0 < S < ∞

Last Answer : c) 1 < S < ∞

Description : The attenuation constant in lossless dielectrics will be a) 0 b) 1 c) -1 d) ∞

Last Answer : a) 0

Description : At dc field, the displacement current density will be a) 0 b) 1 c) Jc d) ∞

Last Answer : a) 0

Description : Find the magnetic flux density when the vector potential is a position vector. a) 1 b) 0 c) -1 d) ∞

Last Answer : b) 0

Description : The divergence of H will be a) 1 b) -1 c) ∞ d) 0

Last Answer : d) 0

Description : When the rotational path of the magnetic field intensity is zero, then the current in the path will be a) 1 b) 0 c) ∞ d) 0.5

Last Answer : b) 0

Description : The susceptibility of free space is a) 1 b) 0 c) 2 d) ∞

Last Answer : b) 0

Description : The potential due to the dipole on the midpoint of the two charges will be a) 0 b) Unity c) ∞ d) -∞

Last Answer : a) 0

Description : Find the potential due the dipole when the angle subtended by the two charges at the point P is perpendicular. a) 0 b) Unity c) ∞ d) -∞

Last Answer : a) 0

Description : If two functions A and B are discrete, their Green’s value for a region of circle of radius a in the positive quadrant is a) ∞ b) -∞ c) 0 d) Does not exist

Last Answer : d) Does not exist

Description : The potential in a lamellar field is a) 1 b) 0 c) -1 d) ∞

Last Answer : b) 0

Description : The loss tangent refers to the a) Power due to propagation in conductor to that in dielectric b) Power loss c) Current loss d) Charge loss

Last Answer : a) Power due to propagation in conductor to that in dielectric

Description : Electric field of an infinitely long conductor of charge density λ, is given by E = λ/(2πεh).aN. State True/False. a) True b) False

Last Answer : a) True

Description : When a material has zero permittivity, the maximum potential that it can possess is a) ∞ b) -∞ c) Unity d) Zero

Last Answer : d) Zero

Description : Calculate the skin depth of a conductor, having a conductivity of 200 units. The wave frequency is 10 GHz in air. a) 355.8 b) 3.558 c) 35.58 d) 0.3558

Last Answer : a) 355.8

Description : Calculate the phase constant of a conductor with attenuation constant given by 0.04 units. a) 0.02 b) 0.08 c) 0.0016 d) 0.04

Last Answer : d) 0.04

Description : Calculate the flux density due to a circular conductor of radius 100nm and current 5A in air. a) 10 b) 100 c) 0.1 d) 1

Last Answer : a) 10

Description : Consider the conductor to be a coil of turns 60 and the flux density to be 13.5 units, current 0.12A and area 16units. The torque will be a) 1555.2 b) 1222.5 c) 525.1 d) 255.6

Last Answer : a) 1555.2

Description : Find the flux density due to a conductor of length 6m and carrying a current of 3A(in 10 -7 order) a) 1 b) 10 c) 100 d) 0.1

Last Answer : a) 1

Description : Find the height of an infinitely long conductor from point P which is carrying current of 6.28A and field intensity is 0.5 units. a) 0.5 b) 2 c) 6.28 d) 1

Last Answer : b) 2

Description : Find the current density on the conductor surface when a magnetic field H = 3cos x i + zcos x j A/m, for z>0 and zero, otherwise is applied to a perfectly conducting surface in xy plane. a) cos x i b) –cos x i c) cos x j d) –cos x j

Last Answer : b) –cos x i

Description : Compute the conductivity when the current density is 12 units and the electric field is 20 units. Also identify the nature of the material. a) 1.67, dielectric b) 1.67, conductor c) 0.6, dielectric d) 0.6, conductor

Last Answer : c) 0.6, dielectric

Description : Find the force on a conductor of length 12m and magnetic flux density 20 units when a current of 0.5A is flowing through it. a) 60 b) 120 c) 180 d) 200

Last Answer : b) 120

Description : In free space, the charge carriers will be a) 0 b) 1 c) 100 d) Infinity

Last Answer : a) 0

Description : The charge density of a field with a position vector as electric flux density is given by a) 0 b) 1 c) 2 d) 3

Last Answer : d) 3

Description : The charge density of a system with the position vector as electric flux density is a) 0 b) 1 c) 2 d) 3

Last Answer : d) 3

Description : Find the electric flux density of a material whose charge density is given by 12 units in a volume region of 0.5 units. a) 12 b) 24 c) 6 d) 48

Last Answer : c) 6

Description : Find the charge density when the electric flux density is given by 2x i + 3y j + 4z k. a) 10 b) 9 c) 24 d) 0

Last Answer : b) 9

Description : Find the magnetic field intensity due to an infinite sheet of current 5A and charge density of 12j units in the positive y direction and the z component is below the sheet. a) 6 b) 0 c) -6 d) 60k

Last Answer : c) -6

Description : Find the electric field due to charge density of 1/18 and distance from a point P is 0.5 in air(in 10 9 order) a) 0 b) 1 c) 2 d) 3

Last Answer : c) 2

Description : Calculate the electric field intensity of a line charge of length 2m and potential 24V. a) 24 b) 12 c) 0.083 d) 12.67

Last Answer : b) 12

Description : The bound charge density and free charge density are 12 and 6 units respectively. Calculate the susceptibility. a) 1 b) 0 c) 2 d) 72

Last Answer : c) 2

Description : A circular disc of radius 5m with a surface charge density ρs = 10sinφ is enclosed by surface. What is the net flux crossing the surface? a) 3 b) 2 c) 1 d) 0

Last Answer : d) 0

Description : A point charge 0.4nC is located at (2, 3, 3). Find the potential differences between (2, 3, 3)m and (-2, 3, 3)m due to the charge. a) 2.5 b) 2.6 c) 2.7 d) 2.8

Last Answer : c) 2.7

Description : A point charge 2nC is located at origin. What is the potential at (1,0,0)? a) 12 b) 14 c) 16 d) 18

Last Answer : d) 18

Description : Find the flux density of line charge of radius (cylinder is the Gaussian surface) 2m and charge density is 3.14 units? a) 1 b) 0.75 c) 0.5 d) 0.25

Last Answer : d) 0.25

Description : Find the force on a charge 2C in a field 1V/m. a) 0 b) 1 c) 2 d) 3

Last Answer : c) 2

Description : For a charge Q1, the effect of charge Q2 on Q1 will be, a) F1 = F2 b) F1 = -F2 c) F1 = F2 = 0 d) F1 and F2 are not equal

Last Answer : b) F1 = -F2

Description : A charge of 2 X 10 -7 C is acted upon by a force of 0.1N. Determine the distance to the other charge of 4.5 X 10 -7 C, both the charges are in vacuum. a) 0.03 b) 0.05 c) 0.07 d) 0.09

Last Answer : d) 0.09

Description : Two small diameter 10gm dielectric balls can slide freely on a vertical channel. Each carry a negative charge of 1μC. Find the separation between the balls if the lower ball is restrained from moving. a) 0.5 b) 0.4 c) 0.3 d) 0.2

Last Answer : c) 0.3

Description : Compute the Gauss law for D = 10ρ 3 /4 i, in cylindrical coordinates with ρ = 4m, z = 0 and z = 5, hence find charge using volume integral. a) 6100 π b) 6200 π c) 6300 π d) 6400 π View Answe

Last Answer : d) 6400 π

Description : An electric field is given as E = 6y 2 z i + 12xyz j + 6xy 2 k. An incremental path is given by dl = -3 i + 5 j – 2 k mm. The work done in moving a 2mC charge along the path if the location of the path is at p(0,2,5) is (in Joule) a) 0.64 b) 0.72 c) 0.78 d) 0.80

Last Answer : b) 0.72

Description : A perfect conductor acts as a a) Perfect transmitter b) Perfect reflector c) Bad transmitter d) Bad reflector

Last Answer : b) Perfect reflector

Description : The skin depth of a wave with phase constant of 12 units inside a conductor is a) 12 b) 1/12 c) 24 d) 1/24

Last Answer : b) 1/12

Description : The propagation constant of the wave in a conductor with air as medium is a) √(ωμσ) b) ωμσ c) √(ω/μσ) d) ω/μσ

Last Answer : a) √(ωμσ)

Description : The expression for velocity of a wave in the conductor is a) V = √(2ω/μσ) b) V = √(2ωμσ) c) V = (2ω/μσ) d) V = (2ωμσ)

Last Answer : a) V = √(2ω/μσ)