The expression for velocity of a wave in the conductor is
a) V = √(2ω/μσ)
b) V = √(2ωμσ)
c) V = (2ω/μσ)
d) V = (2ωμσ)

1 Answer

Answer :

a) V = √(2ω/μσ)

Related questions

Description : The propagation constant of the wave in a conductor with air as medium is a) √(ωμσ) b) ωμσ c) √(ω/μσ) d) ω/μσ

Last Answer : a) √(ωμσ)

Description : The expression for intrinsic impedance is given by a) √(με) b) (με) c) √(μ/ε) d) (μ/ε)

Last Answer : c) √(μ/ε)

Description : Calculate the velocity of wave propagation in a conductor with frequency 5 x 10 8 rad/s and phase constant of 3 x 10 8 units. a) 3/5 b) 15 c) 5/3 d) 8

Last Answer : c) 5/3

Description : The torque expression of a current carrying conductor is a) T = BIA cos θ b) T = BA cos θ c) T = BIA sin θ d) T = BA sin θ

Last Answer : c) T = BIA sin θ

Description : The relation between the speed of light, permeability and permittivity is a) C = 1/√(με) b) C = με c) C = μ/ε d) C = 1/με

Last Answer : a) C = 1/√(με)

Description : Calculate the skin depth of a conductor, having a conductivity of 200 units. The wave frequency is 10 GHz in air. a) 355.8 b) 3.558 c) 35.58 d) 0.3558

Last Answer : a) 355.8

Description : The skin depth of a wave with phase constant of 12 units inside a conductor is a) 12 b) 1/12 c) 24 d) 1/24

Last Answer : b) 1/12

Description : Find the force experienced by an electromagnetic wave in a conductor? a) Electrostatic force b) Magneto static force c) Electro motive force d) Lorentz force

Last Answer : d) Lorentz force

Description : The expression for refractive index is given by a) N = v/c b) N = c/v c) N = cv d) N = 1/cv

Last Answer : b) N = c/v

Description : The expression for magnetization is given by(I-current, A-area, V-volume) a) M = IAV b) M = IA/V c) M = V/IA d) M = 1/IAV

Last Answer : b) M = IA/V

Description : Speed ‘v’ with which wave travels through a medium is given by A. modulus of elasticity/density of the medium B. modulus of elasticity/√(density of the medium) C. √(modulus of elasticity/density of the medium) D. v=d/t

Last Answer : √(modulus of elasticity/density of the medium)

Description : Torricelli's theorem states that the velocity ‘v’ of the liquid emerging from the bottom of the wide tank is given by √(2gh). In practice, this velocity is: A. equal to √(2gh) B. greater than √(2gh) C. lesser than √(2gh) D. independent of height and gravitational field strength

Last Answer :  lesser than √(2gh

Description : The skin depth of the wave having a frequency of 3MHz and a velocity of 12 m/s is a) 2 b) 3 c) 4 d) 6

Last Answer : c) 4

Description : The power per unit velocity of a wave with electric field as 8 units and density 10 units is a) 40 b) 20 c) 80 d) 160

Last Answer : c) 80

Description : The frequency in rad/sec of a wave with velocity of that of light and phase constant of 20 units is (in GHz) a) 6 b) 60 c) 600 d) 0.6

Last Answer : a) 6

Description : The velocity of a wave travelling in the air medium without transmission lines or waveguides(wireless) is a) 6 x 10 8 b) 3 x 10 8 c) 1.5 x 10 8 d) 9 x 10 8

Last Answer : b) 3 x 10 8

Description : Calculate the velocity of a wave with frequency 2 x10 9 rad/s and phase constant of 4 x 10 8 units. a) 0.5 b) 5 c) 0.2 d) 2

Last Answer : b) 5

Description : Calculate the phase constant of a wave with frequency 12 rad/s and velocity 3×10 8 m/s(in 10 -8 order) a) 0.5 b) 72 c) 4 d) 3

Last Answer : c) 4

Description : If (x, y) is a solution of the following pair of linear equations in two variables, then the value of expression (√ is: x + 2y = 4 and 3x - y = 5 (a) 2 (b) 3 (c) 4 (d) √2

Last Answer : (a) 2

Description : A shaft of length l carries two discs at its two ends. The lowest torsional frequency is ω n . If the shaft length is doubled, then the lowest torsional frequency becomes A ω n /2 B ω n /√2 C √2ω n D 2ω n

Last Answer : B ω n /√2

Description : The resistance of a strip of copper of rectangular cross-section is 2Ω. A metal of resistivity twice that of copper is coated on its upper surface to a thickness equal to that of copper strip. The resistance of composite strip will be

Last Answer : The resistance of a strip of copper of rectangular cross-section is 2Ω. A metal of resistivity twice that of copper is coated on its upper surface to a thickness equal to that of copper strip. The resistance of composite strip will be 4/3Ω.

Description : A perfect conductor acts as a a) Perfect transmitter b) Perfect reflector c) Bad transmitter d) Bad reflector

Last Answer : b) Perfect reflector

Description : The skin depth of a conductor with attenuation constant of 7 neper/m is a) 14 b) 49 c) 7 d) 1/7

Last Answer : d) 1/7

Description : Calculate the attenuation constant of a conductor of conductivity 200 units, frequency 1M radian/s in air. a) 11.2 b) 1.12 c) 56.23 d) 5.62

Last Answer : a) 11.2

Description : Calculate the phase constant of a conductor with attenuation constant given by 0.04 units. a) 0.02 b) 0.08 c) 0.0016 d) 0.04

Last Answer : d) 0.04

Description : The total permeability in a conductor is a) Absolute permeability b) Relative permeability c) Product of absolute and relative permeability d) Unity

Last Answer : c) Product of absolute and relative permeability

Description : An example for lossless propagation is a) Dielectric waveguide propagation b) Conductor propagation c) Cavity resonator propagation d) It is not possible

Last Answer : d) It is not possible

Description : The loss tangent refers to the a) Power due to propagation in conductor to that in dielectric b) Power loss c) Current loss d) Charge loss

Last Answer : a) Power due to propagation in conductor to that in dielectric

Description : The Gauss law for magnetic field is valid in a) Air b) Conductor c) Dielectric d) All cases

Last Answer : d) All cases

Description : The Maxwell second equation that is valid in any conductor is a) Curl(H) = Jc b) Curl(E) = Jc c) Curl(E) = Jd d) Curl(H) = Jd

Last Answer : a) Curl(H) = Jc

Description : Calculate the flux density due to a circular conductor of radius 100nm and current 5A in air. a) 10 b) 100 c) 0.1 d) 1

Last Answer : a) 10

Description : Find the Lorentz force due to a conductor of length 2m carrying a current of 1.5A and magnetic flux density of 12 units. a) 24 b) 36 c) 32 d) 45

Last Answer : c) 32

Description : The torque of a conductor is defined only in the case when a) The field is perpendicular to the loop b) The plane of the loop is parallel to the field c) The plane of the loop is perpendicular to the current direction d) The field and the current direction are same

Last Answer : b) The plane of the loop is parallel to the field

Description : Consider the conductor to be a coil of turns 60 and the flux density to be 13.5 units, current 0.12A and area 16units. The torque will be a) 1555.2 b) 1222.5 c) 525.1 d) 255.6

Last Answer : a) 1555.2

Description : The torque on a conductor with flux density 23 units, current 1.6A and area 6.75 units will be a) 248.4 b) 192.6 c) 175.4 d) 256.9

Last Answer : a) 248.4

Description : The distance of the conductor when the area and length of the conductor is 24m2 and 13.56m. a) 1.76 b) 2.67 c) 1.52 d) 2.15

Last Answer : a) 1.76

Description : Find the maximum force of the conductor having length 60cm, current 2.75A and flux density of 9 units. a) 14.85 b) 18.54 c) 84.25 d) 7.256

Last Answer : a) 14.85

Description : Find the flux density due to a conductor of length 6m and carrying a current of 3A(in 10 -7 order) a) 1 b) 10 c) 100 d) 0.1

Last Answer : a) 1

Description : The force on a conductor of length 12cm having current 8A and flux density 3.75 units at an angle of 300 is a) 1.6 b) 2 c) 1.4 d) 1.8

Last Answer : d) 1.8

Description : Find the flux density of a conductor in the square of the centre of the loop having current 3.14A and radius is 1.414m in air. a) 8π x 10 -7 b) 4π x 10 -7 c) 6π x 10 -7 d) 2π x 10 -7

Last Answer : c) 6π x 10 -7

Description : Find the height of an infinitely long conductor from point P which is carrying current of 6.28A and field intensity is 0.5 units. a) 0.5 b) 2 c) 6.28 d) 1

Last Answer : b) 2

Description : Find the current density on the conductor surface when a magnetic field H = 3cos x i + zcos x j A/m, for z>0 and zero, otherwise is applied to a perfectly conducting surface in xy plane. a) cos x i b) –cos x i c) cos x j d) –cos x j

Last Answer : b) –cos x i

Description : Find the magnetic flux density of a finite length conductor of radius 12cm and current 3A in air( in 10 -6 order) a) 4 b) 5 c) 6 d) 7

Last Answer : b) 5

Description : Electric field will be maximum outside the conductor and magnetic field will be maximum inside the conductor. State True/False. a) True b) False

Last Answer : a) True

Description : Find the magnetic field when a circular conductor of very high radius is subjected to a current of 12A and the point P is at the centre of the conductor. a) 1 b) ∞ c) 0 d) -∞

Last Answer : c) 0

Description : The magnetic field intensity will be zero inside a conductor. State true/false. a) True b) False

Last Answer : b) False

Description : Calculate the magnetic field at a point on the centre of the circular conductor of radius 2m with current 8A. a) 1 b) 2 c) 3 d) 4

Last Answer : b) 2

Description : The charge within a conductor will be a) 1 b) -1 c) 0 d) ∞

Last Answer : c) 0

Description : Calculate the potential when a conductor of length 2m is having an electric field of 12.3units. a) 26.4 b) 42.6 c) 64.2 d) 24.6

Last Answer : d) 24.6

Description : Compute the conductivity when the current density is 12 units and the electric field is 20 units. Also identify the nature of the material. a) 1.67, dielectric b) 1.67, conductor c) 0.6, dielectric d) 0.6, conductor

Last Answer : c) 0.6, dielectric