Maximum displacement due to forced vibration is ____________ the displacement due to
static force.
(A) inversely proportional to
(B) directly proportional to
(C) independent of
(D) none of the above

1 Answer

Answer :

(B) directly proportional to

Related questions

Description : The ratio of the maximum displacement of the forced vibration to the deflection due to the static force, is known as A Damping factor B Damping coefficient C Logarithmic decrement D Magnification factor

Last Answer : D Magnification factor

Description : The ratio of the maximum displacement of the forced vibration to the deflection due to the static force is known as A Logarithmic decrement B Magnification factor C Damping factor D None of the mentioned

Last Answer : B Magnification factor

Description : The ratio of maximum displacement of the forced vibration to the deflection due to the static force, is known as A. Damping FactorB. Damping Coefficient C. Logarithmic Decrement D. Magnification Factor

Last Answer : D. Magnification Factor

Description : The ratio of the maximum displacement of the forced vibration to the deflection due to the static force, is known as a) Damping factor b) Damping coefficient c) Logarithmic decrement d) Magnification factor

Last Answer : d) Magnification factor

Description : The ratio of the maximum displacement of the forced vibration to the deflection due to the static force is known as (A) damping factor (B) damping coefficient (C) logarithmic decrement (D) magnification factor

Last Answer : (D) magnification factor

Description : Maximum displacement due to forced vibration is dependent on deflection due to static force. a) True b) False

Last Answer : a) True

Description : The ratio of the maximum displacement of the forced vibration to the deflection due to the static force, is known as a) damping factor b) damping coefficient c) logarithmic decrement d) magnification factor

Last Answer : d) magnification factor

Description : In the case of steady state forced vibration at a resonance, the amplitude of vibration is A) Inversely proportional to damping coefficient B) Inversely proportional to damping ratio C) Inversely proportional to resonant frequency D) Directly proportional to resonant frequency

Last Answer : B) Inversely proportional to damping ratio

Description : In steady state forced vibrations, the amplitude of vibrations at resonance is _____________ damping coefficient. A equal to B directly proportional to C inversely proportional to D independent of

Last Answer : C inversely proportional to

Description : In steady state forced vibrations, the amplitude of vibrations at resonance is __________ damping coefficient. A. Equal to B. Directly proportional to C. Inversely proportional toD. Independent of

Last Answer : C. Inversely proportional to

Description : n steady state forced vibrations, the amplitude of vibrations at resonance is _____________ damping coefficient. a) equal to b) directly proportional to c) inversely proportional to d) independent of

Last Answer : c) inversely proportional to

Description : In steady state forced vibrations, the amplitude of vibrations at resonance is _____________ damping coefficient. (A) equal to (B) directly proportional to (C) inversely proportional to (D) independent of

Last Answer : (C) inversely proportional to

Description : In steady state forced vibrations, the amplitude of vibrations at resonance is _____________ damping coefficient. a) equal to b) directly proportional toc) inversely proportional to d) independent of

Last Answer : c) inversely proportional to

Description : Magnification factor is the ratio of the maximum displacement due to forced vibrations to the deflection due to _______ A Static force B Dynamic force C Torsion D Compression

Last Answer : A Static force

Description : Magnification factor is the ratio of the maximum displacement due to forced vibrations to the deflection due to _______ a) Static force b) Dynamic force c) Torsion d) Compression

Last Answer : a) Static force

Description : The ratio of maximum displacement of the forced vibration to the deflection due to static force is known as : (A) Damping Factor (B) Damping Coefficient (C) Logarithmic Decrement (D) Magnification Factor

Last Answer : Magnification Factor

Description : A weight of 50 N is suspended from a spring of stiffness 4000N/m and subjected to a harmonic force of magnitude 60N and frequency 60 Hz. what will be the static displacement of the spring due to maximum applied force A. 0.015m B. 0.15 m C. 15 m D. 150m

Last Answer : B. 0.15 m

Description : The frequency of vibration of a stretched string is _______ its length. (a) Directly proportional to (b) Inversely proportional to (c) Directly proportional to the square of (d) Independent of

Last Answer : Ans:(b)

Description : If ωmax is the frequency at which the peak amplitude occurs and ωn is the natural frequency of the system then In a forced vibration system with damping, the higher the damping, A) More will be ... and ωmax is independent of damping in this system D) The difference between ωn and ωmax will be zero

Last Answer : A) More will be the difference between ωn and ωmax

Description : Natural frequency of the system is due to A Resonance B Forced Vibration C Damping D Free Vibration

Last Answer : D Free Vibration

Description : Natural frequency of the system is due to A) Free vibration B) Forced vibration C) Resonance D) Damping

Last Answer : A) Free vibration

Description : Extension and applied force are A. directly proportional B. inversely proportional C. are independent of each other D. inversely related

Last Answer : inversely related

Description : The vibration in a vehicle is normally expressed in the terms of the ______________. (A) displacement (B) velocity (C) acceleration (D) none of the above

Last Answer : (C) acceleration

Description : The instruments which are used to measure the ___________ of a vibrating body are called vibration measuring instrument. (A) displacement (B) velocity (C) acceleration (D) all of the above

Last Answer : (D) all of the above

Description : When there is a reduction in amplitude over every cycle of vibration, then the body is said to have A Free vibration B Forced vibration C Damped vibration D None of the mentioned

Last Answer : C Damped vibration

Description : If frequency of excitation of a forced vibration system with negligible damping is very close to natural frequency of the system, then the system will A) Execute harmonic motion of large amplitude B) Beat with a very high peak amplitude C) Perform aperiodic motion D) None of the above

Last Answer : A) Execute harmonic motion of large amplitude

Description : The response of a damped forced vibration system A) Leads the system excitation ( for all values of ω/ ωn) B) Lags the system excitation ( for all values of ω/ ωn) C) Leads the system excitation ( for all values of ω/ ωn

Last Answer : B) Lags the system excitation ( for all values of ω/ ωn)

Description : A forced vibration system vibrates at A) Natural frequency of the system B) Frequency of external excitation C) Frequency of internal excitation D) None of the above

Last Answer : B) Frequency of external excitation

Description : When there is a reduction in amplitude over every cycle of vibration, then the body is said to have ( A ) Free vibration ( B ) Forced vibration ( C ) Damped vibration ( D ) None of the mentioned

Last Answer : ( C ) Damped vibration

Description : When there is a reduction in amplitude over every cycle of vibration, then the body is said to have a) free vibration b) forced vibration c) damped vibrationd) under damped vibration

Last Answer : c) damped vibration

Description : When there is a reduction in amplitude over every cycle of vibration, then the body is said to have a) free vibration b) forced vibration c) damped vibration d) under damped vibration

Last Answer : c) damped vibration

Description : When there is a reduction in amplitude over every cycle of vibration, then the body is said to have a) free vibration b) forced vibration c) damped vibration d) none of the mentioned

Last Answer : c) damped vibration

Description : The natural frequency of the spring mass is inversely proportional to A. Stiffness B. Mass C. Density D. Deflection

Last Answer : B. Mass

Description : SHM is the motion in which acceleration of the body is proportional to its displacement and directed towards the mean position. A. True B. False C. Neither True Nor False D. None

Last Answer : A. True

Description : Transmissibility in a support excitation system is defined by A) Ratio of absolute amplitude of the mass to the excitation amplitude of the support B) Reciprocal of (a) C) Ratio of the ... the foundation, to the equivalent force corresponding to maximum displacement excitation D) None of the above

Last Answer : B) Reciprocal of (a)

Description : Vibration measuring instruments are classified on the basis of ____________. (A) contact between the vibrating system and measuring instrument (B) the requirement of power source (C) method of measurements (D) all of the above

Last Answer : (D) all of the above

Description : The statement that "maximum wavelength of radiation is inversely proportional to the temperature" is __________ law. (A) Stefan-Boltzmann’s (B) Planck's (C) Wien's displacement (D) None of these

Last Answer : (C) Wien's displacement

Description : What is Hooke's Law? (1) Stress is inversely proportional to strain. (2) Stress is directly proportional to strain. (3) Stress and strain are dependent on each other. (4) Stress and strain are independent of each other.

Last Answer : (2) Stress is directly proportional to strain. Explanation: Hooke's law is a principle of physics that states that the force (F) needed to extend or compress a spring by some distance X scales linearly with respect to that distance.

Description : What is Hooke's Law? (1) Stress is inversely proportional to strain. (2) Stress is directly proportional to strain. (3) Stress and strain are dependent on each other. (4) Stress and strain are independent of each other.

Last Answer : (2) Stress is directly proportional to strain. Explanation: Hooke's law is a principle of physics that states that the force (F) needed to extend or compress a spring by some distance X scales linearly with respect to that distance.

Description : What is Hooke’s Law? (1) Stress is inversely proportional to strain. (2) Stress is directly proportional to strain. (3) Stress and strain are dependent on each other. (4) Stress and strain are independent of each other.

Last Answer : (2) Stress is directly proportional to strain. Explanation: Hooke’s law is a principle of physics that states that the force (F) needed to extend or compress a spring by some distance X scales linearly with respect to that distance.

Description : In the Newton's law range, the terminal velocity of a solid spherical particle falling through a stationary fluid mass is __________ the fluid viscosity. (A) Directly proportional to (B) Inversely proportional to (C) Inversely proportional to the square root of (D) Independent of

Last Answer : (B) Inversely proportional to

Description : Half-life period for a first order reaction is __________ the initial concentration of the reactant. (A) Directly proportional to (B) Inversely proportional to (C) Independent of (D) None of these

Last Answer : (C) Independent of

Description : At very high concentration of enzymes, the rate of fermentation chemical reaction is __________ the concentration of reactants. (A) Independent of (B) Directly proportional to (C) Inversely proportional to (D) Proportional to the square of

Last Answer : (A) Independent of

Description : Time factor for a clay layer is (A) A dimensional parameter (B) Directly proportional to permeability of soil (C) Inversely proportional to drainage path (D) Independent of thickness of clay layer

Last Answer : (B) Directly proportional to permeability of soil

Description : A fluid is termed as the Newtonian fluid, when the shear stress is __________ the velocity gradient. (A) Independent of (B) Inversely proportional to (C) Directly proportional to (D) None of these

Last Answer : (C) Directly proportional to

Description : When a beam is subjected to a bending moment the strain in a layer is …………the distance from the neutral axis. (a) Independent of (b) Directly proportional to (c) Inversely proportional to (d) None of these

Last Answer : (b) Directly proportional to

Description : In coulomb damping the frequency of damped vibrations is A Equal to that of undamped vibrations B Less than that of undamped vibrationsC More than that of undamped vibrations D Independent of the frequency of undamped vibration

Last Answer : A Equal to that of undamped vibrations

Description : In case of viscous damping the frequency of damped vibration is A) Equal to that of undamped vibrations B) Less than that of undamped vibrations C) Greater than that of undamped vibrations D) Independent than that of undamped vibrations

Last Answer : B) Less than that of undamped vibrations

Description : Transmissibility in a force excitation system is defined by the ratio of the A) Maximum excitation force to the force transmitted to the foundation B) Force transmitted to the foundation, to the maximum ... Maximum static deflection of the ass to the deflection of the foundation D) None of the above

Last Answer : B) Force transmitted to the foundation, to the maximum excitation force