The vibration in a vehicle is normally expressed in the terms of the ______________.
(A) displacement
(B) velocity
(C) acceleration
(D) none of the above

1 Answer

Answer :

(C) acceleration

Related questions

Description : The instruments which are used to measure the ___________ of a vibrating body are called vibration measuring instrument. (A) displacement (B) velocity (C) acceleration (D) all of the above

Last Answer : (D) all of the above

Description : The equations of motion of a two-degree-of-freedom system can be expressed in terms of the displacement of either of the two masses.

Last Answer : True

Description : A seismometer is a device used to measure the ___________ of a vibrating body. (A) displacement (B) velocity (C) acceleration (D) all of the above

Last Answer : (A) displacement

Description : A seismometer is a device used to measure the ___________ of a vibrating body. (A) displacement (B) velocity (C) acceleration (D) all of the above

Last Answer : (A) displacement

Description : The ratio of the maximum displacement of the forced vibration to the deflection due to the static force, is known as A Damping factor B Damping coefficient C Logarithmic decrement D Magnification factor

Last Answer : D Magnification factor

Description : The ratio of the maximum displacement of the forced vibration to the deflection due to the static force is known as A Logarithmic decrement B Magnification factor C Damping factor D None of the mentioned

Last Answer : B Magnification factor

Description : The ratio of maximum displacement of the forced vibration to the deflection due to the static force, is known as A. Damping FactorB. Damping Coefficient C. Logarithmic Decrement D. Magnification Factor

Last Answer : D. Magnification Factor

Description : The ratio of the maximum displacement of the forced vibration to the deflection due to the static force, is known as a) Damping factor b) Damping coefficient c) Logarithmic decrement d) Magnification factor

Last Answer : d) Magnification factor

Description : Maximum displacement due to forced vibration is ____________ the displacement due to static force. (A) inversely proportional to (B) directly proportional to (C) independent of (D) none of the above

Last Answer : (B) directly proportional to

Description : The ratio of the maximum displacement of the forced vibration to the deflection due to the static force is known as (A) damping factor (B) damping coefficient (C) logarithmic decrement (D) magnification factor

Last Answer : (D) magnification factor

Description : Maximum displacement due to forced vibration is dependent on deflection due to static force. a) True b) False

Last Answer : a) True

Description : The ratio of the maximum displacement of the forced vibration to the deflection due to the static force, is known as a) damping factor b) damping coefficient c) logarithmic decrement d) magnification factor

Last Answer : d) magnification factor

Description : The vector representing acceleration on a vector diagram for a harmonic motion A) Lags the displacement vector by 90° B) Lags the displacement vector by 180° C) Leads the displacement vector by 90° D) Leads the displacement vector by 180°

Last Answer : C) Leads the displacement vector by 90°

Description : SHM is the motion in which acceleration of the body is proportional to its displacement and directed towards the mean position. A. True B. False C. Neither True Nor False D. None

Last Answer : A. True

Description : The velocity vector in a vector diagram for a harmonic motion A Lags the displacement vector by 180 0 B Lags the displacement vector by 90 0 C Leads the displacement vector by 90 0 D Leads the displacement vector by 180 0

Last Answer : C Leads the displacement vector by 90 0

Description : The velocity vector in a vector diagram for a harmonic motion A Lags the displacement vector by 180 0 B Lags the displacement vector by 90 0 C Leads the displacement vector by 90 0 D Leads the displacement vector by 180 0

Last Answer : C Leads the displacement vector by 90 0

Description : Which of the following relations is true for viscous damping? A) Force α relative displacement B) Force α relative velocity C) Force α (1 / relative velocity) D) None of the above

Last Answer : B) Force α relative velocity

Description : The velocity vector in a vector diagram for a harmonic motion A) Lags the displacement vector by 180° B) Leads the displacement vector by 90° C) Lags the displacement vector by 90° D) Leads the displacement vector by 180°

Last Answer : B) Leads the displacement vector by 90°

Description : The velocity vector in a vector diagram for a harmonic motion C (A) Lags the displacement vector by 180 0 (B) Lags the displacement vector by 90 0 (C) Leads the displacement vector by 90 0 (D) Leads the displacement vector by 180 0

Last Answer : (C) Leads the displacement vector by 90 0

Description : Which of the following relations is true for viscous damping? a. Force α relative displacement b. Force α relative velocity c. Force α (1 / relative velocity) d. None of the above

Last Answer : b. Force α relative velocity

Description : In damped vibrations, the amplitude of the resulting vibration gradually reduces. This is due to the reason that an amount of energy is always dissipated to overcome the ________ * 1 point (A) Frictional resistance (B) Work done(C) Fluid pressure (D) Air pressure

Last Answer : (A) Frictional resistance

Description : In a two-rotor system, torsional vibration occurs only if the rotors are moving in the ______ direction. (A) same (B) opposite (C) either same or opposite (D) none of the above

Last Answer : (B) opposite

Description : The accelerometers are commonly used in vibration measurement due to their ___________. (A) small size and low sensitivity (B) the large size and high sensitivity (C) the large size and low sensitivity (D) small size and high sensitivity

Last Answer : (D) small size and high sensitivity

Description : Which of the following systems produce a vibration in the foundation? (A) Coupled machine(B) Uncoupled machine (C) Balanced machine (D) Unbalanced machine

Last Answer : (D) Unbalanced machine

Description : From the following, which one is a type of vibration measuring instrument? A Mechanical B Electrical C Magnetic D All of the above

Last Answer : D All of the above

Description : In vibration isolation system, if ω/ωn, then the phase difference between the transmitted force and the disturbing force is A 0° B 90° C 180° D 270°

Last Answer : C 180°

Description : The accelerometer is used as a transducer to measure earthquake in Richter scale. Its design is based on the principle that A Its natural frequency is very low in comparison to the frequency ... is equal to the frequency of vibration D Measurement of vibratory motion is without any reference point

Last Answer : C Its natural frequency is equal to the frequency of vibration

Description : In vibration isolation system, if ω/ωn < 2, then for all values of damping factor, the transmissibility will be A less than unity B equal to unity C greater than unity D zero

Last Answer : C greater than unity

Description : When there is a reduction in amplitude over every cycle of vibration, then the body is said to have A Free vibration B Forced vibration C Damped vibration D None of the mentioned

Last Answer : C Damped vibration

Description : Calculate natural frequency of damped vibration, if damping factor is 0.52 and natural frequency of the system is 30 rad/sec which consists of machine supported on springs and dashpots. A 25.62 rad/sec B 20.78 rad/sec C 14.4 rad/sec D 15.33 rad/sec

Last Answer : A 25.62 rad/sec

Description : Which of the following is a type of free vibration? A Longitudinal vibrations B Transverse vibrations C Torsional vibrations D A, B and C

Last Answer : D A, B and C

Description : The number of cycles described in one second is known as _______. A period of vibration B cycle C frequency D all of the above

Last Answer : C frequency

Description : The motion completed during one time period is known as _______. A period of vibration B cycle C frequency D all of the above

Last Answer : B cycle

Description : In a two-rotor system, torsional vibration occurs only if the rotors are moving in the ______ direction. A. same B. opposite C. either same or opposite D. none of the above

Last Answer : B. opposite

Description : The motion of a system executing harmonic motion with one natural frequency is known as _______ A. principal mode of vibration B. natural mode of vibration C. both a. and b. D. none of the above

Last Answer : C. both a. and b.

Description : In the diagram shown below, if rotor X and rotor Z rotate in same direction and rotor Y rotates in opposite direction, then specify the type of node vibration. A. Three node vibration B. Two node vibration C. Single node vibration D. None of the above

Last Answer : B. Two node vibration

Description : What is meant by node point? A. The point at which amplitude of vibration is maximum B. The point at which amplitude of vibration is minimum C. The point at which amplitude of vibration is zero D. None of the above

Last Answer : C. The point at which amplitude of vibration is zero

Description : In a dynamic vibration absorber system, under tuned conditions which of the following relation holds good? A K 1 K 2 =M 1 M 2 B K 1 M 2 =M 1 K 2 C K 1 M 1 = K 2 M 2 D none of the mentioned

Last Answer : B K 1 M 2 =M 1 K 2

Description : Dynamic vibration absorber is suitable for A varying speed machines B constant speed machines C Zero speed range machines D None of the mentioned

Last Answer : B constant speed machines

Description : Calculate natural frequency of damped vibration, if damping factor is 0.52 and natural frequency of the system is 30 rad/sec which consists of machine supported on springs and dashpots. A 21 rad/sec B 25.62 rad/sec C 20.22 Hz D 3.15 Hz

Last Answer : B 25.62 rad/sec

Description : During resonance A the Vibrations remains unaffected B no vibration occurs C low amplitude of vibration occurs D high amplitude of vibration occurs

Last Answer : D high amplitude of vibration occurs

Description : In coulomb damping the frequency of damped vibrations is A Equal to that of undamped vibrations B Less than that of undamped vibrationsC More than that of undamped vibrations D Independent of the frequency of undamped vibration

Last Answer : A Equal to that of undamped vibrations

Description : Natural frequency of the system is due to A Resonance B Forced Vibration C Damping D Free Vibration

Last Answer : D Free Vibration

Description : Increasing which of the following factor would result in increase of free torsional vibration? A. Radius of gyration B. Mass moment of inertia C. Polar moment of inertia D. Length

Last Answer : C. Polar moment of inertia

Description : In vibration isolation system, if ω/ω n > 1, then the phase difference between the transmitted force and the disturbing force is A. 0° B. 90° C. 180° D. 270°

Last Answer : C. 180°

Description : In vibration isolation system, the transmissibility will be equal to unity, for all values of damping factor, if ω/ωn is A. Equal to 1 B. Equal to √2 C. Less than √2 D. Greater than √2

Last Answer : B. Equal to √2

Description : In the diagram shown below, if rotor X and rotor Z rotate in same direction and rotor Y rotates in opposite direction, then specify the type of node vibration. A. Three node vibration B. Two node vibration C. Single node vibration D. None of the above

Last Answer : B. Two node vibration

Description : An increase in the mass moment of inertia results in ________ in vibration frequency. A. increase B. decrease C. unchanged D. none of the above

Last Answer : B. decrease

Description : Which of the following is a type of free vibration? A. Longitudinal vibrations B. Transverse vibrations C. Torsional vibrations D. A, B and C

Last Answer : D. A, B and C

Description : The motion completed during one time period is known as _______. A. period of vibration B. cycle C. frequency D. all of the above

Last Answer : B. cycle