Determine the equivalent spring constant of the system shown in FigK1=10 N/m, K2=20 N/m. K3=30 N/m, K4=34 N/m, K5=40 N/m
a) 10N/m
b)20N/m
c)30N/m
d) None

1 Answer

Answer :

b)20N/m

Related questions

Description : for the system shown below K1=20N/m K1=10N/m K1=20N/m K1=50N/mFind W such that the natural frequency of the system will be 1.592 cycles per second a)0.125kg b)0.25kg c)0.5kg 4)4kg

Last Answer : b)0.25kg

Description : A graph is non-planar if and only if it contains a subgraph homeomorphic to (A) K3,2 or K5 (B) K3,3 and K6 (C) K3,3 or K5 (D) K2,3 and K5

Last Answer : (C) K3,3 or K5 Explanation: Kuratowski’s Theorem: A graph is non-planar if and only if it contains a subgraph that is homeomorphic to either K5 or K3,3.

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 43200 N/m and mass of 12 kg. A 40.22 rad/sec B 40 Hz C 60 Hz D 60 rad/sec

Last Answer : D 60 rad/sec

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 30000 N/m and mass of 20 kg? A 12.32 Hz B 4.10 Hz C 6.16 HzD None of the above

Last Answer : C 6.16 Hz

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 30000 N/m and mass of 20 kg? A. 12.32 Hz B. 4.10 Hz C. 6.16 Hz D. None of the above

Last Answer : C. 6.16 Hz

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 30000 N/m and mass of 20 kg? A) 12.32 Hz B) 4.10 Hz C) 6.16 Hz D) None of the above

Last Answer : C) 6.16 Hz

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 30000 N/m and mass of 20 kg? C ( A )12.32 Hz (B) 4.10 Hz ( C )6.16 Hz (D)None of the above

Last Answer : ( C )6.16 Hz

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 30000 N/m mass of 20 kg? a. 12.32 Hz b. 4.10 Hz c. 6.16 Hz d. None of the above

Last Answer : c. 6.16 Hz

Description : Find the equivalent damping constant of the system shown in Fig. for c1=22N.s/m and c2= 11N.s/m a) 40 N/m 2 b)38 N/m 2 c)44 N/m 2 d)8.8 N/m 2

Last Answer : c)44 N/m 2

Description : In a 2-mass 3 spring vibrating system the two masses each are of 9.8 kg coupling spring is having a stiffness of 3430 N/m whereas the other two springs have each a stiffness of 8820 N/m. The two natural frequencies in rad /sec are A) 10 & 20 B) 20 & 30 C) 30 & 40D) 40 & 50

Last Answer : C) 30 & 40

Description : A vibrating system having mass 1kg, a spring of stiffness 1000N/m and damping factor of 0.632 and it is put to harmonic excitation of 10N. Find the amplitude at resonance. A 0.079 B 7.9C 0.056 D 0.00791

Last Answer : D 0.00791

Description : The equivalent stiffness of spring connected in parallel having stiffnesses k1 and k2 can be written as * 1 point (A)(1/k1) + (1/k2) (B) (1/k1) - (1/k2) (C) k1 + k2 (D) None of the above

Last Answer : (C) k1 + k2

Description : Equivalent stiffness of spring connected in paralled having stiffness k1 and k2 can be given as A) K = k1+ k2 B) K = k1- k2 C) 1/k = 1/k1 + 1/k2 D) 1/k = 1/k1 - 1/k2

Last Answer : A) K = k1+ k2

Description : Calculate equivalent stiffness of the spring for the system shown below, which has spring stiffness of 3000 N/m a. 1000 N/m b. 2250 N/m c. 2000 N/m d. None of the above

Last Answer : b. 2250 N/m

Description : A car weighing 1000kg deflects its springs by 0.4cm under its load. Determine the natural frequency of 2 car in vertical direction take g=10N/m a) 25 rad/sec b)50 rad/sec c) 2 rad/sec d)none

Last Answer : b)50 rad/sec

Description : Decomposition rate of a liquid 'X' which decomposes as per the reaction as shown in the bellow figure is given by: (A) K1 . CX (B) (K1 + K2 + K3 ) CX (C) (K1 + K2 ) CX (D) (K2 + K3 ) CX

Last Answer : (C) (K1 + K2 ) CX

Description : A 1 kg mass is suspended by a spring having a stiffness of 0.4 N/mm. Determine the natural frequency. A 20 rad/sec B 30 rad/sec C 20 Hz D 30 Hz

Last Answer : B 30 rad/sec

Description : A complex compound in which the oxidation number of a metal is zero is - (1) K4 [Fe (CN)6] (2) K3 [Fe (CN)6] (3) [Ni (CO)4] (4) [Pl (NH3)4]Cl2

Last Answer : (3) [Ni (CO)4]

Description : A spring-mass system has a natural frequency of 10 rad/sec. When the spring constant is reduced by 800 N/m, the frequency is altered by 45 percent. Find the mass and spring constant of the original system. a)11.47kg and 1147.95N/m b)8.95kg and 895.25N/m c) 7.265kg and 726.5N/m d)None

Last Answer : a)11.47kg and 1147.95N/m

Description : Two springs have spring stiffness of 1500 N/m and 2000 N/m respectively. If they are connected in series, what is the spring stiffness if they are replaced by an equivalent system.3500 N/m A. 3500 N/m B. 1166 N/mC. 857.63 N/m D. None of the above

Last Answer : C. 857.63 N/m

Description : Two springs have spring stiffness of 1500 N/m and 2000 N/m respectively. If they are connected in series, what is the spring stiffness if they are replaced by an equivalent system.3500 N/m A) 3500 N/m B) 1166 N/m C) 857.63 N/m D) None of the above

Last Answer : C) 857.63 N/m

Description : Two springs have spring stiffness of 1500 N/m and 2000 N/m respectively. If they are connected in series, what is the spring stiffness if they are replaced by an equivalent system.3500 N/m a. 3500 N/m b. 1166 N/m c. 857.63 N/m d. None of the above

Last Answer : c. 857.63

Description : Which of the following relations is true when springs are connected parallelly? where K = spring stiffness a.Ke= K1 +K2 b. (1/Ke)=(1/K1)+(1/K2) c.Ke= (1/K1)+(1/K2) d.None of the above

Last Answer : a.Ke= K1 +K2

Description : Two springs have spring stiffness of 1500 N/m and 1 KN/m respectively. If they are connected in series, what will be the equivalent spring stiffness? A 1KN/m B 600 N/m C 1 N/m D 600 KN/m

Last Answer : B 600 N/m

Description : Two springs have spring stiffness of 1500 N/m and 1 KN/m respectively. If they are connected in series, what will be the equivalent spring stiffness? A 1KN/m B 600 N/m C 1 N/m D 600 KN/m

Last Answer : B 600 N/m

Description : Two springs have spring stiffness of 1500 N/m and 1 KN/m respectively. If they B are connected in series, what will be the equivalent spring stiffness? (A) 1KN/m (B) 600 N/m (C) 1 N/m (D) 600 KN/m

Last Answer : (B) 600 N/m

Description : A vehicle suspension system consists of a spring and a damper. The stiffness of the spring is 3.6 kN/m and the damping constant of the damper is 400 Ns/m. If the mass is 50 kg, then the damping factor (d ) and damped natural ... , are a) 0.471 and 1.19 Hz b) 0.471 and 7.48 Hz c) 0.666 and 1.35 Hz

Last Answer : a) 0.471 and 1.19 Hz

Description : A vehicle suspension system consists of a spring and a damper. The stiffness of the spring is 3.6 kN/m and the damping constant of the damper is 400 Ns/m. If the mass is 50 kg, then the damping factor (d ) and damped natural ... .19 Hz b) 0.471 and 7.48 Hz c) 0.666 and 1.35 Hz d) 0.666 and 8.50 Hz

Last Answer : a) 0.471 and 1.19 Hz

Description : The thickness of oxide film is y at time t. If K1, K2 and K3 are the temperature dependent constants, the parabolic law of oxidation is given by (A) y2 = 2k1t + k2 (B) y = k1 ln (k2t + k3) (C) y = k1 t + k2 (D) y = k1t3 + k2

Last Answer : Option A

Description : The number of different spanning trees in complete graph, K4 and bipartite graph K2,2 have .......... and .....…. respectively. (A) 14, 14 (B) 16, 14 (C) 16, 4 (D) 14, 4

Last Answer : (C) 16, 4 

Description : A vehicle suspension system consists of a spring and a damper. Stiffness of spring is 3.5 KN/m and damping constant of damper is 400Ns/m. If mass is 50 kg, then damping factor is A 0.606 B 0.10 C 0.666 D 0.471

Last Answer : D 0.471

Description : Calculate the value of critical damping coefficient if a vibrating system has mass of 4kg and stiffness of 100N/m A 20 N-sec/m B 40 N-sec/m C 60 N-sec/m D 80 N-sec/m

Last Answer : B 40 N-sec/m

Description : A rotary system has a damping coefficient of 40 N-m-sec/rad. The damping torque at a velocity of 2 rad/s, will be A) 20 N-m B) 40 N-m C) 80 N-m D) 100 N-m

Last Answer : C) 80 N-m

Description : A mass of 10 kg when suspended from a spring causes a static deflection of 0.01m. Find the spring stiffness for the same system. A 9810 N/m B 8910 N/m C 1098 N/m D 9801 N/m

Last Answer : A 9810 N/m

Description : A mass of 10 kg when suspended from a spring causes a static deflection of 0.01m. Find the spring stiffness for the same system. A 9810 N/m B 8910 N/m C 1098 N/m D 9801 N/m

Last Answer : D 9801 N/m

Description : Calculate coefficient of viscous damper, if the system is critically damped. Consider the following data: 1. Mass of spring mass damper system = 350 kg 2. Static deflection = 2 x 10 -3 m 3. Natural frequency of the system = 60 rad/sec ... /m B. 80 x 10 3 N-s/m C. 42 x 10 3 N-s/m D. None of the above

Last Answer : C. 42 x 10 3 N-s/m

Description : A mass of 10 kg when suspended from a spring causes a static deflection of A 0.01m. Find the spring stiffness for the same system. (A) 9810 N/m (B) 8910 N/m (C)1098 N/m (D) 9801 N/m

Last Answer : A) 9810 N/m

Description : A 10 Kg mass suspended by spring of stiffness 1000 N/m. the natural frequency of the system after giving excitation will be A. 0 Hz B. 1.59 Hz C. 2 Hz D. 15.9 Hz

Last Answer : B. 1.59 Hz

Description : Calculate coefficient of viscous damper, if the system is critically damped. Consider the following data: 1. Mass of spring mass damper system = 350 kg 2. Static deflection = 2 x 10 -3 m 3. Natural frequency of the system = 60 rad/sec ... /m b. 80 x 10 3 N-s/m c. 42 x 10 3 N-s/m d. None of the above

Last Answer : c. 42 x 10 3 N-s/m

Description : In the graph shown below, the region in which frequency ratio (ω/ω n ) > √2 is known as____ A. Amplification region B. Isolation region C. Spring controlled region D. None of the above

Last Answer : B. Isolation region

Description : In spring mass experiment, the natural frequency of 10 kg mass was found to be 12 rad/sec. the stiffness of the spring is A. 800 N/m B. 1200 N/m C. 1440 N/m D. 2000 N/m

Last Answer : C. 1440 N/m

Description : Calculate damped natural frequency, if a spring mass damper system is subjected to periodic disturbing force of 30 N. Damping coefficient is equal to 0.76 times of critical damping coefficient and undamped natural frequency is 5 rad/sec A. 3.99 rad/sec B. 2.13 rad/sec C. 4.12 rad/sec D. 3.24 rad/sec

Last Answer : D. 3.24 rad/sec

Description : A single degree of freedom spring-mass system is subjected to a harmonic force of constant amplitude. For an excitation frequency of √3k/m , the ratio of the amplitude of steady state response to the static deflection of the spring is __________ A. 0.2 B. 0.5 C. 0.8 D. None of the above

Last Answer : B. 0.5

Description : A system has a mass of 0.5 kg and spring stiffness of 2452 N/m. Find the natural frequency of the system. A. 5.14 Hz B. 9.14 Hz C. 11.14 Hz D. 28.14 Hz

Last Answer : C. 11.14 Hz

Description : A vertical spring-mass system has a mass of 0.5 kg and an initial deflection of 0.2 cm. Find the spring stiffness. A. 345 N/m B. 245 N/m C. 3452 N/mD. 2452 N/m

Last Answer : D. 2452 N/m

Description : A system has a mass of 0.5 kg and spring stiffness of 2452 N/m. Find the natural frequency of the system. (A) 5.14 Hz (B) 9.14 Hz (C) 11.14 Hz (D) 28.14 Hz

Last Answer : (C) 11.14 Hz

Description : A gun barrel of mass 600 Kg has a recoil spring of stiffness 294 KN/m. If the barrel recoils 1.3 m on firing, what will be the initial recoil velocity of the barrel? (A) 28.77 m/s (B) 32.77 m/s (C) 35.77 m/s (D) 40.77 m/s

Last Answer : (A) 28.77 m/s

Description : A weight of 50 N is suspended from a spring of stiffness 4000N/m and subjected to a harmonic force of magnitude 60N and frequency 60 Hz. what will be the static displacement of the spring due to maximum applied force A. 0.015m B. 0.15 m C. 15 m D. 150m

Last Answer : B. 0.15 m

Description : Two springs have spring stiffness of 1500 N/m and 2000 N/m respectively. If they are connected in series, what is the spring stiffness a. 3500 N/m b. 1166 N/m c. 857.63 N/m d. None of the above

Last Answer : c. 857.63 N/m

Description : Determine the viscous damping coefficient if damper offers resistance 0.05N at constant velocity 0.04m/sec A 0.8N-sec/m B 1.5N-sec/m C 2.5N-sec/m D 1.25N-sec/m

Last Answer : D 1.25N-sec/m