Which among the following is the fundamental equation of S.H.M.?
a. x + (k / m) x =0
b. x + ω2x =0
c. x + (k/ m)2 x =0
d. x2 + ωx2 =0

1 Answer

Answer :

b. x + ω2x =0

Related questions

Description : Which among the following is the fundamental equation of S.H.M.? A. x + (k / m) x =0 B. x + ω 2 x =0 C. x + (k/ m) 2 x =0 D. x 2 + ωx 2 =0

Last Answer : B. x + ω 2 x =0

Description : Which among the following is the fundamental equation of S.H.M.? A) x + (k / m) x =0 B) x + ω 2 x =0 C) x + (k/ m) 2 x =0 D) x 2 + ωx 2 =0

Last Answer : B) x + ω 2 x =0

Description : Which among the following is the fundamental equation of S.H.M.? a. x+(k/m)x=0 b. x+ω 2 x=0 c. x+(k/m) 2 x=0 d. x 2 + ωx 2 =0

Last Answer : d. x 2 + ωx 2 =0

Description : The equation of motion for a vibrating system with viscous damping is d 2 x/dt 2 + c/m X dx/dt + k/m X x = 0 If the roots of this equation are real, then the system will be a) over damped b) under damped c) critically damped d) none of the mentioned Ans:a

Last Answer : a) over damped

Description : The equation of motion for a vibrating system with viscous damping is d 2 x/dt 2 + c/m X dx/dt + s/m X x = 0 If the roots of this equation are real, then the system will be A. over damped B. under damped C. critically damped D. none of the mentioned

Last Answer : A. over damped

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the differential equation for damped free vibrations having single degree of freedom. What will be the solution to this differential equation if the system is ... Φ) C x = (A - Bt) e - ωt D x = X e - ξωt (cos ω d t + Φ)

Last Answer : A x = (A + Bt) e – ωt

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the differential equation for damped free vibrations having single degree of freedom. What will be the solution to this differential equation if the system is ... ) C. x = (A - Bt) e - ωt D. x = X e - ξωt (cos ω d t + Φ

Last Answer : A. x = (A + Bt) e – ωt

Description : The equation m(d 2 x/ dt 2 ) + c (dx/dt) + Kx = F 0 sin ωt is a second order differential equation. The solution of this linear equation is given as A. complementary function B. particular function C. sum of complementary and particular function D. difference of complementary and particular function

Last Answer : C. sum of complementary and particular function

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the A differential equation for damped free vibrations having single degree of freedom. What will be the solution to this differential equation if the system is ... (C)x = (A - Bt) e - ωt ( D )x = X e - ξωt (cos ω d t + Φ

Last Answer : ( A ) x = (A + Bt) e – ωt

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the differential equati damped free vibrations having single degree of freedom. What will be the solution to this differ equation if the system is critically ... c. x = (A - Bt) e - ωt d. x = X e - ξωt (cos ω d t + Φ)

Last Answer : a. x = (A + Bt) e – ωt

Description : In under damped vibrating system, if x1 and x2 are the successive values of the amplitude on the same side of the mean position, then the logarithmic decrement is equal to a) x1/x2 b) log (x1/x2) c) ln (x1/x2) d) log (x1.x2)

Last Answer : c) ln (x1/x2)

Description : The system governed by the equation stable if 14 a. k is positive b. c and k are positive is dynamically c. c is positive

Last Answer : b. c and k are positive

Description : The natural frequency (in Hz) of free longitudinal vibrations is equal to a) Square root (k/m) / (2π) b) Square root (g/δ) / (2π) c) 0.4985/δ d) all of the mentioned

Last Answer : d) all of the mentioned

Description : If the spring mass system with m and spring stiffness k is taken to very high altitude, the natural frequency of longitudinal vibrations * 1 point (A) increases (B) decreases (C) remain unchanged (D) may increase or decrease depending upon the value of the mass

Last Answer : (C) remain unchanged

Description : A mass of 1 kg is attached to two identical springs each with stiffness k = 20 kN/m as shown in the figure. Under frictionless condition, the natural frequency of the system in Hz is close to * 1 point (A) 32 (B) 23 (C) 16 (D) 11

Last Answer : (A) 32

Description : In a dynamic vibration absorber system, under tuned conditions which of the following relation holds good? A K 1 K 2 =M 1 M 2 B K 1 M 2 =M 1 K 2 C K 1 M 1 = K 2 M 2 D none of the mentioned

Last Answer : B K 1 M 2 =M 1 K 2

Description : In a spring mass system of mass m and stiffness k, the end of the spring are securely fixed and mass is attached to intermediate point of spring. The natural frequency of longitudinal ... is attached decreases D) Decreases as the distance from the bottom end where mass is attached decreases

Last Answer : B) Is minimum when mass is attached to mid point of the spring

Description : If the spring mass system with m and spring stiffness k is taken to very high altitude , the natural frequency of longitudinal vibrations A) Increases B) Decreases C) Remain unchanged D) May be increase or decrease depending upon the value of the mass

Last Answer : C) Remain unchanged

Description : Damping factor, ε = A. C/Cc B. C.Cc C. K/m D. K.m

Last Answer : A. C/Cc

Description : Consider the steady-state absolute amplitude equation shown below, if ω / ω n = √2 then amplitude ratio (X/Y) =? (X/Y) = √{1 + [ 2ξ (ω/ω n )] 2 } / √{[1 – (ω/ω n ) 2 ] 2 + {2ξ (ω/ω n ) 2 } A. 0 B. 1 C. less than 1 D. greater than 1

Last Answer : B. 1

Description : Calculate coefficient of viscous damper, if the system is critically damped. Consider the following data: 1. Mass of spring mass damper system = 350 kg 2. Static deflection = 2 x 10 -3 m 3. Natural frequency of the system = 60 rad/sec ... /m B. 80 x 10 3 N-s/m C. 42 x 10 3 N-s/m D. None of the above

Last Answer : C. 42 x 10 3 N-s/m

Description : Calculate coefficient of viscous damper, if the system is critically damped. Consider the following data: 1. Mass of spring mass damper system = 350 kg 2. Static deflection = 2 x 10 -3 m 3. Natural frequency of the system = 60 rad/sec ... /m b. 80 x 10 3 N-s/m c. 42 x 10 3 N-s/m d. None of the above

Last Answer : c. 42 x 10 3 N-s/m

Description : Calculate damping ratio if mass = 200Kg, ω = 20rad/s and damping coefficient = 800 N/m/s A. 0.03 B. 0.04 C. 0.05 D. 0.06

Last Answer : A. 0.03

Description : find the value of logarithmic decrement of a vibratory system if its natural frequency is 10rad/sec, its mass is 10kg and its damping constant is 100N.s/m a) 36.27 b)362.7 c)0.3627 d)3.627

Last Answer : d)3.627

Description : Calculate damping ratio from the following data: mass = 200Kg ω = 20rad/s damping coefficient = 1000 N/m/s a) 0.03 b) 0.04 c) 0.05 d) 0.06

Last Answer : b) 0.04

Description : Calculate damping ratio from the following data: mass = 200Kg ω = 20rad/s damping coefficient = 800 N/m/s a) 0.03 b) 0.04 c) 0.05 d) 0.06

Last Answer : a) 0.03

Description : Who among the following former Chiefs of Army Staff had been awarded the ‘Mahavir Chakra’ twice ? (1) General K.M. Cariappa (2) General K.S. Thimmayya (3) General A.S. Vaidya (4) General S.H.F.J. Man-ekshaw

Last Answer : General A.S. Vaidya 

Description : Unit of the damping factor is ______. (A) Nm/s (B) N/sm (C) N/m (D) none of the above

Last Answer : (D) none of the above

Description : The static deflection of a spring under gravity, when a mass of 1 kg is suspended from it, is 1 mm. Assume the acceleration due to gravity g = 10 m/s^2. The natural frequency of this spring-mass system (in rad/s) is A 100 B 150 C 200 D 250

Last Answer : A 100

Description : A rotary system has a damping coefficient of 40 N-m-sec/rad. The damping torque at a velocity of 2 rad/s, will be A) 20 N-m B) 40 N-m C) 80 N-m D) 100 N-m

Last Answer : C) 80 N-m

Description : Find the equivalent damping constant of the system shown in Fig. for c1=22N.s/m and c2= 11N.s/m a) 40 N/m 2 b)38 N/m 2 c)44 N/m 2 d)8.8 N/m 2

Last Answer : c)44 N/m 2

Description : A gun barrel of mass 600 Kg has a recoil spring of stiffness 294 KN/m. If the barrel recoils 1.3 m on firing, what will be the initial recoil velocity of the barrel? (A) 28.77 m/s (B) 32.77 m/s (C) 35.77 m/s (D) 40.77 m/s

Last Answer : (A) 28.77 m/s

Description : If Ic = 125 Kg-m 2 and ω= 20 rad/s, calculate the kinetic of the constraint. a) 8333 J b) 7333 J c) 6333 J d) 9333 J

Last Answer : a) 8333 J

Description : Unit of damping factor is N/m/s. a) True b) False

Last Answer : b) False

Description : Calculate critical damping coefficient in N/m/s from the following data: mass = 100Kg ω = 40rad/s a) 25,132 b) 26,132 c) 27,132 d) 28,132

Last Answer : a) 25,132

Description : If one of the roots of the equation x^2 + ax + 3 = 0 is 3 and one of the roots of the equation x2 + ax + b = 0 is three -Maths 9th

Last Answer : answer:

Description : If the roots of the equation (b – c)x2 + (c – a)x + (a – b) = 0 are equal, then prove that 2b = a + c. -Maths 10th

Last Answer : following is the equation of 2b = a+c =

Description : If the roots ff the equation (c2 – ab)x2 – 2(a2 – bc)x + b2 – ac = 0 are equal, then prove that either a = 0 or a3 + b3 + c3 = 3abc -Maths 10th

Last Answer : (c2 – ab) x2 + 2(bc - a2 ) x+ (b2 – ac) = 0 Comparing with Ax2 + Bx + C = 0 A = (c2 – ab), B = 2(bc - a2 ) and C = b2 – ac According to the question, B2 - 4AC = 0 Put the values in the above equation we get 4a(a3 + b3 + c3 -3abc) = 0 hence, a = 0 or a3 + b3 + c3 = 3ab

Description : Which of the following relations is true when springs are connected series. A K e = K 1 + K 2 B (1 / K e ) = (1/K 1 ) + (1/ K 2 ) C K e = (1/K 1 ) + (1/ K 2 ) D (1 / K e ) = K 1 + K 2

Last Answer : B (1 / K e ) = (1/K 1 ) + (1/ K 2 )

Description : Which of the following relations is true when springs are connected parallelly? A K e = K 1 + K 2 B (1 / K e ) = (1/K 1 ) + (1/ K 2 ) C K e = (1/K 1 ) + (1/ K 2 ) D (1 / K e ) = K 1 + K 2

Last Answer : A K e = K 1 + K 2

Description : Equivalent stiffness of spring connected in paralled having stiffness k1 and k2 can be given as A) K = k1+ k2 B) K = k1- k2 C) 1/k = 1/k1 + 1/k2 D) 1/k = 1/k1 - 1/k2

Last Answer : A) K = k1+ k2

Description : Which of the following relations is true when springs are connected series. (A) K e = K 1 + K 2 (B) (1 / K e ) = (1/K 1 ) + (1/ K 2 ) (C) K e = (1/K 1 ) + (1/ K 2 ) (D) (1 / K e ) = K 1 + K 2

Last Answer : (B) (1 / K e ) = (1/K 1 ) + (1/ K 2 )

Description : In coulomb damping, the amplitude of motion in each cycle is reduced by A. F/K B. 2F/K C. 4F/K D. F/4K

Last Answer : C. 4F/K

Description : If two springs having individual stiffness K, are in parallel, then their equivalent stiffness will be A. 2K B. K C. K/2 D. 4K

Last Answer : A. 2K

Description : Reduction in vibration amplitude after one complete cycle of single degree free vibration with dry friction damping is_____, if where F"= frictional force between mass and surface and k =stiffness of the system. a)4F/k a b) 2f/K C) 3F/k D)8F/k

Last Answer : a)4F/k

Description : Which of the following relations is true when springs are connected in parallel? where K = spring stiffnessa. K e = K 1 + K 2 b. (1 / K e ) = (1/K 1 ) + (1/ K 2 ) c. K e = (1/K 1 ) + (1/ K 2 ) d. None of the above

Last Answer : a. K e = K 1 + K 2

Description : Which of the following relations is true when springs are connected parallelly? where K = spring stiffness a.Ke= K1 +K2 b. (1/Ke)=(1/K1)+(1/K2) c.Ke= (1/K1)+(1/K2) d.None of the above

Last Answer : a.Ke= K1 +K2

Description : What is meant by coupled differential equation? A. The differential equation in which only rectilinear motions exit B. The differential equation in which only angular motions exit C. The differential equation in which both rectilinear and angular motions exit D. None of the above

Last Answer : C. The differential equation in which both rectilinear and angular motions exit

Description : In which of the following cases, underdamping occurs? A. Roots are real B. Roots are complex conjugate C. Roots are equal D. Independent of the equation

Last Answer : B. Roots are complex conjugate

Description : What is meant by coupled differential equation? A) The differential equation in which only rectilinear motions exit B) The differential equation in which only angular motions exit C) The differential equation in which both rectilinear and angular motions exit D) None of the above

Last Answer : C) The differential equation in which both rectilinear and angular motions exit