In coulomb damping, the amplitude of motion in each cycle is reduced by
A. F/K
B. 2F/K
C. 4F/K
D. F/4K

1 Answer

Answer :

C. 4F/K

Related questions

Description : Reduction in vibration amplitude after one complete cycle of single degree free vibration with dry friction damping is_____, if where F"= frictional force between mass and surface and k =stiffness of the system. a)4F/k a b) 2f/K C) 3F/k D)8F/k

Last Answer : a)4F/k

Description : The equivalent viscous damping coefficient Ceq for coulomb damping is given by A) 4F/πωx B) 4πF/ωx C) πωx/4F D) ωx/4Πf

Last Answer : A) 4F/πωx

Description : Which of the following statements is/are true for coulomb damping? 1. Coulomb damping occurs due to friction between two lubricated surfaces2. Damping force is opposite to the direction of motion of vibrating body ... 2, 3 and statement 4 c. Only statement 2 d. All the above statements are true

Last Answer : c. Only statement 2

Description : If frequency of excitation of a forced vibration system with negligible damping is very close to natural frequency of the system, then the system will A) Execute harmonic motion of large amplitude B) Beat with a very high peak amplitude C) Perform aperiodic motion D) None of the above

Last Answer : A) Execute harmonic motion of large amplitude

Description : The motion of particle is represented by, x = Asin(wt) in which A stands for A. Amplitude B. Wavelength C. Frequency D. Damping

Last Answer : A. Amplitude

Description : Two bodies kept at a certain distance feel a gravitational force F to each other. If the distance between them is made double the former distance, the force will be - (1) 2F (2) F/2 (3) 4F (4) F/4

Last Answer : (4) F/4

Description : Eddy current damping is an example of _____ A Coulomb damping B Hysteresis damping C Viscous damping D Dry friction damping

Last Answer : C Viscous damping

Description : In coulomb damping the frequency of damped vibrations is A Equal to that of undamped vibrations B Less than that of undamped vibrationsC More than that of undamped vibrations D Independent of the frequency of undamped vibration

Last Answer : A Equal to that of undamped vibrations

Description : When parts of a vibrating system slide on a dry surface, the damping is A. Viscous. B. Coulomb C. Structural D. Eddy current

Last Answer : B. Coulomb

Description : Eddy current damping is an example of _____A. Coulomb damping B. Hysteresis damping C. Viscous damping D. Dry friction damping

Last Answer : C. Viscous damping

Description : Eddy current damping is an example of _____ A) Coulomb damping B) Hysteresis damping C) Viscous damping D) Dry friction damping

Last Answer : C) Viscous damping

Description : Following are the types of damping A. Viscous Damping B. Coulomb Damping C. Hysteresis Damping D. All the above

Last Answer : D. All the above

Description : Eddy current damping is an example of _____ a. Coulomb damping b. Hysteresis damping c. Viscous damping d. Dry friction damping

Last Answer : c. Viscous damping

Description : When a system vibrates in a fluid medium, the damping is (a) viscous (b) Coulomb (c) solid

Last Answer : (a) viscous

Description : The equation of motion for a vibrating system with viscous damping is d 2 x/dt 2 + c/m X dx/dt + k/m X x = 0 If the roots of this equation are real, then the system will be a) over damped b) under damped c) critically damped d) none of the mentioned Ans:a

Last Answer : a) over damped

Description : If two springs having individual stiffness K, are in parallel, then their equivalent stiffness will be A. 2K B. K C. K/2 D. 4K

Last Answer : A. 2K

Description : In steady state forced vibrations, the amplitude of vibrations at resonance is _____________ damping coefficient. A equal to B directly proportional to C inversely proportional to D independent of

Last Answer : C inversely proportional to

Description : A vibrating system having mass 1kg, a spring of stiffness 1000N/m and damping factor of 0.632 and it is put to harmonic excitation of 10N. Find the amplitude at resonance. A 0.079 B 7.9C 0.056 D 0.00791

Last Answer : D 0.00791

Description : In steady state forced vibrations, the amplitude of vibrations at resonance is __________ damping coefficient. A. Equal to B. Directly proportional to C. Inversely proportional toD. Independent of

Last Answer : C. Inversely proportional to

Description : If ωmax is the frequency at which the peak amplitude occurs and ωn is the natural frequency of the system then In a forced vibration system with damping, the higher the damping, A) More will be ... and ωmax is independent of damping in this system D) The difference between ωn and ωmax will be zero

Last Answer : A) More will be the difference between ωn and ωmax

Description : In the case of steady state forced vibration at a resonance, the amplitude of vibration is A) Inversely proportional to damping coefficient B) Inversely proportional to damping ratio C) Inversely proportional to resonant frequency D) Directly proportional to resonant frequency

Last Answer : B) Inversely proportional to damping ratio

Description : The advantage of critical damping is A. That vibrating body come to rest in smallest possible time B. There is no vibration C. That amplitude of vibration is maximum D. The amplitude of vibration is minimum

Last Answer : A. That vibrating body come to rest in smallest possible time

Description : n steady state forced vibrations, the amplitude of vibrations at resonance is _____________ damping coefficient. a) equal to b) directly proportional to c) inversely proportional to d) independent of

Last Answer : c) inversely proportional to

Description : In steady state forced vibrations, the amplitude of vibrations at resonance is _____________ damping coefficient. (A) equal to (B) directly proportional to (C) inversely proportional to (D) independent of

Last Answer : (C) inversely proportional to

Description : In steady state forced vibrations, the amplitude of vibrations at resonance is _____________ damping coefficient. a) equal to b) directly proportional toc) inversely proportional to d) independent of

Last Answer : c) inversely proportional to

Description : -3g+2f+g-4f?

Last Answer : -3g+2f+

Description : What is meant by critical damping coefficient? * 1 point (A) Frequency of damped free vibrations is less than zero (B). The motion is a periodic in nature (C). Both a. and b. (D). None of the above

Last Answer : (C). Both a. and b.

Description : What is meant by critical damping coefficient? A Frequency of damped free vibrations is less than zero B The motion is aperiodic in nature C Both a. and b. D None of the above

Last Answer : B The motion is aperiodic in nature

Description : The equation of motion for a vibrating system with viscous damping is d 2 x/dt 2 + c/m X dx/dt + s/m X x = 0 If the roots of this equation are real, then the system will be A. over damped B. under damped C. critically damped D. none of the mentioned

Last Answer : A. over damped

Description : What is meant by critical damping coefficient? B ( A )Frequency of damped free vibrations is less than zero ( B )The motion is aperiodic in nature ( C )Both a. and b. (D)None of the above

Last Answer : ( B )The motion is aperiodic in nature

Description : The damping is used to control the __________ of body. A. Force B. Viscosity C. Motion D. None

Last Answer : C. Motion

Description : What is meant by critical damping coefficient? a. Frequency of damped free vibrations is less than zero b. The motion is aperiodic in nature c. Both a. and b. d. None of the above

Last Answer : b. The motion is aperiodic in nature

Description : In which direction does the damping force acts? a) Opposite to the motion b) Along the motion c) Perpendicular to motion d) Variable

Last Answer : a) Opposite to the motion

Description : Damping factor, ε = A. C/Cc B. C.Cc C. K/m D. K.m

Last Answer : A. C/Cc

Description : If the amplitude of harmonic motion is large, its frequency A) Will always be high B) Will always be less C) Can have any value D) Will be zero

Last Answer : C) Can have any value

Description : A vehicle suspension system consists of a spring and a damper. The stiffness of the spring is 3.6 kN/m and the damping constant of the damper is 400 Ns/m. If the mass is 50 kg, then the damping factor (d ) and damped natural ... , are a) 0.471 and 1.19 Hz b) 0.471 and 7.48 Hz c) 0.666 and 1.35 Hz

Last Answer : a) 0.471 and 1.19 Hz

Description : A vehicle suspension system consists of a spring and a damper. The stiffness of the spring is 3.6 kN/m and the damping constant of the damper is 400 Ns/m. If the mass is 50 kg, then the damping factor (d ) and damped natural ... .19 Hz b) 0.471 and 7.48 Hz c) 0.666 and 1.35 Hz d) 0.666 and 8.50 Hz

Last Answer : a) 0.471 and 1.19 Hz

Description : Time taken to complete one cycle is known as A Resonance B Frequency C Period D Damping

Last Answer : C Period

Description : When there is a reduction in amplitude over every cycle of vibration, then the body is said to have A Free vibration B Forced vibration C Damped vibration D None of the mentioned

Last Answer : C Damped vibration

Description : In which type of vibrations, amplitude of vibration goes on decreasing every cycle? A) Damped vibrations B) Undamped vibrations C) Both a. and b. D) None of the above

Last Answer : A) Damped vibrations

Description : When there is a reduction in amplitude over every cycle of vibration, then the body is said to have ( A ) Free vibration ( B ) Forced vibration ( C ) Damped vibration ( D ) None of the mentioned

Last Answer : ( C ) Damped vibration

Description : When there is a reduction in amplitude over every cycle of vibration, then the body is said to have a) free vibration b) forced vibration c) damped vibrationd) under damped vibration

Last Answer : c) damped vibration

Description : In which type of vibrations, amplitude of vibration goes on decreasing every cycle? a. Damped vibrations b. Undamped vibrations c. Both a. and b. d. None of the above

Last Answer : a. Damped vibrations

Description : In which type of vibrations, amplitude of vibration goes on decreasing every cycle? a. Dampedvibrations b. Undampedvibrations c. Botha.andb. d. None of the above

Last Answer : c. Botha.andb.

Description : When there is a reduction in amplitude over every cycle of vibration, then the body is said to have a) free vibration b) forced vibration c) damped vibration d) under damped vibration

Last Answer : c) damped vibration

Description : When there is a reduction in amplitude over every cycle of vibration, then the body is said to have a) free vibration b) forced vibration c) damped vibration d) none of the mentioned

Last Answer : c) damped vibration

Description : A couple consists of a force P acting at a point A whose coordinates are (-1,2,4) m and force - F acting at a point whose coordinates are (2,3, -2)m. If F = 3i + 2j - 4k in kg units the moment of the couple in kg - m ... .8i - 6j - 3k b.12i - 3j + k c.16i - 12j - 6k d.4i - 3j + k e.8i + 5j + 3k

Last Answer : a. 8i - 6j - 3k

Description : The motion completed during one time period is known as _______. A period of vibration B cycle C frequency D all of the above

Last Answer : B cycle

Description : The motion completed during one time period is known as _______. A. period of vibration B. cycle C. frequency D. all of the above

Last Answer : B. cycle