Negative damping leads to
a. instability
b. fast convergence
c. oscillationsNegative damping leads to
a. instability
b. fast convergence
c. oscillations

1 Answer

Answer :

a. instability

Related questions

Description : The rate of decay of oscillations is known as....... A. critical damping B. damping coefficient C. transmissibility D. logarithmic decrement

Last Answer : D. logarithmic decrement

Description : The second derivative input signals modify which of the following? a) The time constant of the system b) Damping of the system c) The time constant and suppress the oscillations d) The gain of the system

Last Answer : Ans: C

Description : What is meant by critical damping coefficient? * 1 point (A) Frequency of damped free vibrations is less than zero (B). The motion is a periodic in nature (C). Both a. and b. (D). None of the above

Last Answer : (C). Both a. and b.

Description : Unit of the damping factor is ______. (A) Nm/s (B) N/sm (C) N/m (D) none of the above

Last Answer : (D) none of the above

Description : Which of the following is a type of transmitted force to the foundation? (A) Damping force (B) Undamping force (C) Tensile force (D) Torsional force

Last Answer : (A) Damping force

Description : In vibration isolation system, if ω/ωn < 2, then for all values of damping factor, the transmissibility will be A less than unity B equal to unity C greater than unity D zero

Last Answer : C greater than unity

Description : In steady state forced vibrations, the amplitude of vibrations at resonance is _____________ damping coefficient. A equal to B directly proportional to C inversely proportional to D independent of

Last Answer : C inversely proportional to

Description : A simple pendulum is found to vibrate at a frequency of 0.5Hz in vacuum and0.45 Hz in a viscous fluid medium. Find the damping factor. 0.5122 (B) 0.9272 (C) 0.4359 (D) 0.2568

Last Answer : (C) 0.4359

Description : A vehicle suspension system consists of a spring and a damper. Stiffness of spring is 3.5 KN/m and damping constant of damper is 400Ns/m. If mass is 50 kg, then damping factor is A 0.606 B 0.10 C 0.666 D 0.471

Last Answer : D 0.471

Description : The ratio of the maximum displacement of the forced vibration to the deflection due to the static force, is known as A Damping factor B Damping coefficient C Logarithmic decrement D Magnification factor

Last Answer : D Magnification factor

Description : The ratio of the actual damping coefficient (c) to the critical damping coefficient (cc ) is known as _________ A Damping factor B Damping coefficient C Resistive factor D Resistive coefficient

Last Answer : A Damping factor

Description : Calculate logarithmic decrement if damping factor is 0.33. A 1.36 B 3.23 C 5.16D 2.19

Last Answer : D 2.19

Description : Calculate natural frequency of damped vibration, if damping factor is 0.52 and natural frequency of the system is 30 rad/sec which consists of machine supported on springs and dashpots. A 25.62 rad/sec B 20.78 rad/sec C 14.4 rad/sec D 15.33 rad/sec

Last Answer : A 25.62 rad/sec

Description : What is meant by critical damping coefficient? A Frequency of damped free vibrations is less than zero B The motion is aperiodic in nature C Both a. and b. D None of the above

Last Answer : B The motion is aperiodic in nature

Description : Eddy current damping is an example of _____ A Coulomb damping B Hysteresis damping C Viscous damping D Dry friction damping

Last Answer : C Viscous damping

Description : In a spring-mass system, which of the following force is not considered? A Spring force B Damping force C Accelerating force D A and B

Last Answer : B Damping force

Description : Calculate natural frequency of damped vibration, if damping factor is 0.52 and natural frequency of the system is 30 rad/sec which consists of machine supported on springs and dashpots. A 21 rad/sec B 25.62 rad/sec C 20.22 Hz D 3.15 Hz

Last Answer : B 25.62 rad/sec

Description : A vibrating system having mass 1kg, a spring of stiffness 1000N/m and damping factor of 0.632 and it is put to harmonic excitation of 10N. Find the amplitude at resonance. A 0.079 B 7.9C 0.056 D 0.00791

Last Answer : D 0.00791

Description : A simple pendulum is found to vibrate at a frequency of 0.5Hz in vacuum and 0.45Hz in a viscous fluid medium. Find the damping factor. A 0.5122 B 0.9237 C 0.4359 D 0.2568

Last Answer : C 0.4359

Description : Calculate the value of critical damping coefficient if a vibrating system has mass of 4kg and stiffness of 100N/m A 20 N-sec/m B 40 N-sec/m C 60 N-sec/m D 80 N-sec/m

Last Answer : B 40 N-sec/m

Description : Determine the viscous damping coefficient if damper offers resistance 0.05N at constant velocity 0.04m/sec A 0.8N-sec/m B 1.5N-sec/m C 2.5N-sec/m D 1.25N-sec/m

Last Answer : D 1.25N-sec/m

Description : Calculate logarithmic decrement if damping factor is 0.086 A 0.245 B 0.425 C 0.542 D 0.252

Last Answer : C 0.542

Description : The ratio of the maximum displacement of the forced vibration to the deflection due to the static force is known as A Logarithmic decrement B Magnification factor C Damping factor D None of the mentioned

Last Answer : B Magnification factor

Description : The angle between spring force and damping force is A 180 0 B 120 0 C 90 0 D 0 0

Last Answer : C 90 0

Description : In coulomb damping the frequency of damped vibrations is A Equal to that of undamped vibrations B Less than that of undamped vibrationsC More than that of undamped vibrations D Independent of the frequency of undamped vibration

Last Answer : A Equal to that of undamped vibrations

Description : The unit of the viscous damping coefficient is A N-m/sec B m/N-sec C N-sec-m D N-sec/m

Last Answer : D N-sec/m

Description : A system is said to be over damped if the damping factor for the system is A More than one B Less than one C Equal to one D Equal to zero

Last Answer : A More than one

Description : A system is said to be under damped if the damping factor for the system is A More than one B Less than one C Equal to one D Equal to zero

Last Answer : B Less than one

Description : The ratio of actual damping coefficient to the critical damping coefficient is known as A Magnification Factor B Damping Factor C Logarithmic decrementD None of the mentioned

Last Answer : B Damping Factor

Description : A system is said to be critically damped if the damping factor for a vibrating system is A Zero B Less than one C One D More than one

Last Answer : C One

Description : Natural frequency of the system is due to A Resonance B Forced Vibration C Damping D Free Vibration

Last Answer : D Free Vibration

Description : Time taken to complete one cycle is known as A Resonance B Frequency C Period D Damping

Last Answer : C Period

Description : Which of the following is true regarding Ɛ>1? A. Transmitted force is greater than applied force B. Transmitted force is less than applied force C. Spring force is less than applied force D. Damping force is less than applied force

Last Answer : A. Transmitted force is greater than applied force

Description : Calculate damping ratio if mass = 200Kg, ω = 20rad/s and damping coefficient = 800 N/m/s A. 0.03 B. 0.04 C. 0.05 D. 0.06

Last Answer : A. 0.03

Description : The equation of motion for a vibrating system with viscous damping is d 2 x/dt 2 + c/m X dx/dt + s/m X x = 0 If the roots of this equation are real, then the system will be A. over damped B. under damped C. critically damped D. none of the mentioned

Last Answer : A. over damped

Description : Ratio of actual damping coefficient to critical damping coefficient is called A. Damping Factor B. Angular Factor C. Critical Factor D. None of above

Last Answer : A. Damping Factor

Description : In vibration isolation system, the transmissibility will be equal to unity, for all values of damping factor, if ω/ωn is A. Equal to 1 B. Equal to √2 C. Less than √2 D. Greater than √2

Last Answer : B. Equal to √2

Description : When parts of a vibrating system slide on a dry surface, the damping is A. Viscous. B. Coulomb C. Structural D. Eddy current

Last Answer : B. Coulomb

Description : In steady state forced vibrations, the amplitude of vibrations at resonance is __________ damping coefficient. A. Equal to B. Directly proportional to C. Inversely proportional toD. Independent of

Last Answer : C. Inversely proportional to

Description : Eddy current damping is an example of _____A. Coulomb damping B. Hysteresis damping C. Viscous damping D. Dry friction damping

Last Answer : C. Viscous damping

Description : At which frequency ratio, phase angle increases as damping factor increases? A. When frequency ratio is less than unity B. When frequency ratio is more than unity C. When frequency ratio is zero D. All of the above

Last Answer : A. When frequency ratio is less than unity

Description : Calculate damped natural frequency, if a spring mass damper system is subjected to periodic disturbing force of 30 N. Damping coefficient is equal to 0.76 times of critical damping coefficient and undamped natural frequency is 5 rad/sec A. 3.99 rad/sec B. 2.13 rad/sec C. 4.12 rad/sec D. 3.24 rad/sec

Last Answer : D. 3.24 rad/sec

Description : Eddy current damping is an example of _____ A) Coulomb damping B) Hysteresis damping C) Viscous damping D) Dry friction damping

Last Answer : C) Viscous damping

Description : Which of the following relations is true for viscous damping? A) Force α relative displacement B) Force α relative velocity C) Force α (1 / relative velocity) D) None of the above

Last Answer : B) Force α relative velocity

Description : where springs of low damping are required for the purpose of vibration isolation, it will be most desirable to use A) Metallic springs B) Rubber pad C) Air springs D) Neoprene pads

Last Answer : A) Metallic springs

Description : If frequency of excitation of a forced vibration system with negligible damping is very close to natural frequency of the system, then the system will A) Execute harmonic motion of large amplitude B) Beat with a very high peak amplitude C) Perform aperiodic motion D) None of the above

Last Answer : A) Execute harmonic motion of large amplitude

Description : If ωmax is the frequency at which the peak amplitude occurs and ωn is the natural frequency of the system then In a forced vibration system with damping, the higher the damping, A) More will be ... and ωmax is independent of damping in this system D) The difference between ωn and ωmax will be zero

Last Answer : A) More will be the difference between ωn and ωmax

Description : The equivalent viscous damping coefficient Ceq for coulomb damping is given by A) 4F/πωx B) 4πF/ωx C) πωx/4F D) ωx/4Πf

Last Answer : A) 4F/πωx

Description : In the case of steady state forced vibration at a resonance, the amplitude of vibration is A) Inversely proportional to damping coefficient B) Inversely proportional to damping ratio C) Inversely proportional to resonant frequency D) Directly proportional to resonant frequency

Last Answer : B) Inversely proportional to damping ratio