The equivalent viscous damping coefficient Ceq for coulomb damping is given by
A) 4F/πωx
B) 4πF/ωx
C) πωx/4F
D) ωx/4Πf

1 Answer

Answer :

A) 4F/πωx

Related questions

Description : In coulomb damping, the amplitude of motion in each cycle is reduced by A. F/K B. 2F/K C. 4F/K D. F/4K

Last Answer : C. 4F/K

Description : Eddy current damping is an example of _____ A Coulomb damping B Hysteresis damping C Viscous damping D Dry friction damping

Last Answer : C Viscous damping

Description : When parts of a vibrating system slide on a dry surface, the damping is A. Viscous. B. Coulomb C. Structural D. Eddy current

Last Answer : B. Coulomb

Description : Eddy current damping is an example of _____A. Coulomb damping B. Hysteresis damping C. Viscous damping D. Dry friction damping

Last Answer : C. Viscous damping

Description : Eddy current damping is an example of _____ A) Coulomb damping B) Hysteresis damping C) Viscous damping D) Dry friction damping

Last Answer : C) Viscous damping

Description : Following are the types of damping A. Viscous Damping B. Coulomb Damping C. Hysteresis Damping D. All the above

Last Answer : D. All the above

Description : Eddy current damping is an example of _____ a. Coulomb damping b. Hysteresis damping c. Viscous damping d. Dry friction damping

Last Answer : c. Viscous damping

Description : When a system vibrates in a fluid medium, the damping is (a) viscous (b) Coulomb (c) solid

Last Answer : (a) viscous

Description : Which of the following statements is/are true for coulomb damping? 1. Coulomb damping occurs due to friction between two lubricated surfaces2. Damping force is opposite to the direction of motion of vibrating body ... 2, 3 and statement 4 c. Only statement 2 d. All the above statements are true

Last Answer : c. Only statement 2

Description : Determine the viscous damping coefficient if damper offers resistance 0.05N at constant velocity 0.04m/sec A 0.8N-sec/m B 1.5N-sec/m C 2.5N-sec/m D 1.25N-sec/m

Last Answer : D 1.25N-sec/m

Description : The unit of the viscous damping coefficient is A N-m/sec B m/N-sec C N-sec-m D N-sec/m

Last Answer : D N-sec/m

Description : The units of viscous damping coefficient is A) N-m/sec B) m/N-sec C) N-sec/m D) N-m-sec

Last Answer : C) N-sec/m

Description : Reduction in vibration amplitude after one complete cycle of single degree free vibration with dry friction damping is_____, if where F"= frictional force between mass and surface and k =stiffness of the system. a)4F/k a b) 2f/K C) 3F/k D)8F/k

Last Answer : a)4F/k

Description : In coulomb damping the frequency of damped vibrations is A Equal to that of undamped vibrations B Less than that of undamped vibrationsC More than that of undamped vibrations D Independent of the frequency of undamped vibration

Last Answer : A Equal to that of undamped vibrations

Description : A simple pendulum is found to vibrate at a frequency of 0.5Hz in vacuum and0.45 Hz in a viscous fluid medium. Find the damping factor. 0.5122 (B) 0.9272 (C) 0.4359 (D) 0.2568

Last Answer : (C) 0.4359

Description : A simple pendulum is found to vibrate at a frequency of 0.5Hz in vacuum and 0.45Hz in a viscous fluid medium. Find the damping factor. A 0.5122 B 0.9237 C 0.4359 D 0.2568

Last Answer : C 0.4359

Description : The equation of motion for a vibrating system with viscous damping is d 2 x/dt 2 + c/m X dx/dt + s/m X x = 0 If the roots of this equation are real, then the system will be A. over damped B. under damped C. critically damped D. none of the mentioned

Last Answer : A. over damped

Description : Which of the following relations is true for viscous damping? A) Force α relative displacement B) Force α relative velocity C) Force α (1 / relative velocity) D) None of the above

Last Answer : B) Force α relative velocity

Description : In case of viscous damping the frequency of damped vibration is A) Equal to that of undamped vibrations B) Less than that of undamped vibrations C) Greater than that of undamped vibrations D) Independent than that of undamped vibrations

Last Answer : B) Less than that of undamped vibrations

Description : Which of the following relations is true for viscous damping? a. Force α relative displacement b. Force α relative velocity c. Force α (1 / relative velocity) d. None of the above

Last Answer : b. Force α relative velocity

Description : Fluid resistance causes damping which is known as ______ a) Resistance damping b) Fluid dampingc) Viscous damping d) Liquid damping

Last Answer : c) Viscous damping

Description : The equation of motion for a vibrating system with viscous damping is d 2 x/dt 2 + c/m X dx/dt + k/m X x = 0 If the roots of this equation are real, then the system will be a) over damped b) under damped c) critically damped d) none of the mentioned Ans:a

Last Answer : a) over damped

Description : Which among the following is the fundamental equation of S.H.M.? A. x + (k / m) x =0 B. x + ω 2 x =0 C. x + (k/ m) 2 x =0 D. x 2 + ωx 2 =0

Last Answer : B. x + ω 2 x =0

Description : Which among the following is the fundamental equation of S.H.M.? A) x + (k / m) x =0 B) x + ω 2 x =0 C) x + (k/ m) 2 x =0 D) x 2 + ωx 2 =0

Last Answer : B) x + ω 2 x =0

Description : Which among the following is the fundamental equation of S.H.M.? a. x+(k/m)x=0 b. x+ω 2 x=0 c. x+(k/m) 2 x=0 d. x 2 + ωx 2 =0

Last Answer : d. x 2 + ωx 2 =0

Description : Calculate coefficient of viscous damper, if the system is critically damped. Consider the following data: 1. Mass of spring mass damper system = 350 kg 2. Static deflection = 2 x 10 -3 m 3. Natural frequency of the system = 60 rad/sec ... /m B. 80 x 10 3 N-s/m C. 42 x 10 3 N-s/m D. None of the above

Last Answer : C. 42 x 10 3 N-s/m

Description : Calculate coefficient of viscous damper, if the system is critically damped. Consider the following data: 1. Mass of spring mass damper system = 350 kg 2. Static deflection = 2 x 10 -3 m 3. Natural frequency of the system = 60 rad/sec ... /m b. 80 x 10 3 N-s/m c. 42 x 10 3 N-s/m d. None of the above

Last Answer : c. 42 x 10 3 N-s/m

Description : What is meant by critical damping coefficient? * 1 point (A) Frequency of damped free vibrations is less than zero (B). The motion is a periodic in nature (C). Both a. and b. (D). None of the above

Last Answer : (C). Both a. and b.

Description : In steady state forced vibrations, the amplitude of vibrations at resonance is _____________ damping coefficient. A equal to B directly proportional to C inversely proportional to D independent of

Last Answer : C inversely proportional to

Description : The ratio of the maximum displacement of the forced vibration to the deflection due to the static force, is known as A Damping factor B Damping coefficient C Logarithmic decrement D Magnification factor

Last Answer : D Magnification factor

Description : The ratio of the actual damping coefficient (c) to the critical damping coefficient (cc ) is known as _________ A Damping factor B Damping coefficient C Resistive factor D Resistive coefficient

Last Answer : A Damping factor

Description : What is meant by critical damping coefficient? A Frequency of damped free vibrations is less than zero B The motion is aperiodic in nature C Both a. and b. D None of the above

Last Answer : B The motion is aperiodic in nature

Description : Calculate the value of critical damping coefficient if a vibrating system has mass of 4kg and stiffness of 100N/m A 20 N-sec/m B 40 N-sec/m C 60 N-sec/m D 80 N-sec/m

Last Answer : B 40 N-sec/m

Description : The ratio of actual damping coefficient to the critical damping coefficient is known as A Magnification Factor B Damping Factor C Logarithmic decrementD None of the mentioned

Last Answer : B Damping Factor

Description : Calculate damping ratio if mass = 200Kg, ω = 20rad/s and damping coefficient = 800 N/m/s A. 0.03 B. 0.04 C. 0.05 D. 0.06

Last Answer : A. 0.03

Description : Ratio of actual damping coefficient to critical damping coefficient is called A. Damping Factor B. Angular Factor C. Critical Factor D. None of above

Last Answer : A. Damping Factor

Description : In steady state forced vibrations, the amplitude of vibrations at resonance is __________ damping coefficient. A. Equal to B. Directly proportional to C. Inversely proportional toD. Independent of

Last Answer : C. Inversely proportional to

Description : The rate of decay of oscillations is known as....... A. critical damping B. damping coefficient C. transmissibility D. logarithmic decrement

Last Answer : D. logarithmic decrement

Description : Calculate damped natural frequency, if a spring mass damper system is subjected to periodic disturbing force of 30 N. Damping coefficient is equal to 0.76 times of critical damping coefficient and undamped natural frequency is 5 rad/sec A. 3.99 rad/sec B. 2.13 rad/sec C. 4.12 rad/sec D. 3.24 rad/sec

Last Answer : D. 3.24 rad/sec

Description : In the case of steady state forced vibration at a resonance, the amplitude of vibration is A) Inversely proportional to damping coefficient B) Inversely proportional to damping ratio C) Inversely proportional to resonant frequency D) Directly proportional to resonant frequency

Last Answer : B) Inversely proportional to damping ratio

Description : A rotary system has a damping coefficient of 40 N-m-sec/rad. The damping torque at a velocity of 2 rad/s, will be A) 20 N-m B) 40 N-m C) 80 N-m D) 100 N-m

Last Answer : C) 80 N-m

Description : The ratio of the actual damping coefficient (c) to the critical damping coefficient (cc ) is known as _________ ( A ) Damping factor ( B ) Damping coefficient ( C ) Resistive factor ( D ) Resistive coefficient

Last Answer : ( A ) Damping factor

Description : What is meant by critical damping coefficient? B ( A )Frequency of damped free vibrations is less than zero ( B )The motion is aperiodic in nature ( C )Both a. and b. (D)None of the above

Last Answer : ( B )The motion is aperiodic in nature

Description : The ratio of maximum displacement of the forced vibration to the deflection due to the static force, is known as A. Damping FactorB. Damping Coefficient C. Logarithmic Decrement D. Magnification Factor

Last Answer : D. Magnification Factor

Description : n steady state forced vibrations, the amplitude of vibrations at resonance is _____________ damping coefficient. a) equal to b) directly proportional to c) inversely proportional to d) independent of

Last Answer : c) inversely proportional to

Description : What is meant by critical damping coefficient? a. Frequency of damped free vibrations is less than zero b. The motion is aperiodic in nature c. Both a. and b. d. None of the above

Last Answer : b. The motion is aperiodic in nature

Description : The ratio of the maximum displacement of the forced vibration to the deflection due to the static force, is known as a) Damping factor b) Damping coefficient c) Logarithmic decrement d) Magnification factor

Last Answer : d) Magnification factor

Description : In steady state forced vibrations, the amplitude of vibrations at resonance is _____________ damping coefficient. (A) equal to (B) directly proportional to (C) inversely proportional to (D) independent of

Last Answer : (C) inversely proportional to

Description : The ratio of the maximum displacement of the forced vibration to the deflection due to the static force is known as (A) damping factor (B) damping coefficient (C) logarithmic decrement (D) magnification factor

Last Answer : (D) magnification factor