What is the effect on the undamped natural frequency of a single-degree-of- C
freedom system if the mass of the system is increased?
( A ) The frequency will increase ( B ) The frequency will stay the same
( C ) The frequency will decrease ( D ) None of these

1 Answer

Answer :

( C ) The frequency will decrease

Related questions

Description : What is the effect on the undamped natural frequency of a single-degree-of-freedom system if the mass of the system is increased? A The frequency will increase B The frequency will stay the same C The frequency will decrease D None of these

Last Answer : C The frequency will decrease

Description : What is the effect on the undamped natural frequency of a single-degree-of-freedom system if the mass of the system is increased? A) The frequency will increase (B) The frequency will stay the same (C) The frequency will decrease (D) None of these

Last Answer : (C) The frequency will decrease

Description : What is the effect on the undamped natural frequency of a single-degree-of-freedom system if the stiffness of one or more of the springs is increased? (A) The frequency will increase (B) The frequency will stay the same (C) The frequency will decrease (D) None of these

Last Answer : (A) The frequency will increase

Description : Calculate damped natural frequency, if a spring mass damper system is subjected to periodic disturbing force of 30 N. Damping coefficient is equal to 0.76 times of critical damping coefficient and undamped natural frequency is 5 rad/sec A. 3.99 rad/sec B. 2.13 rad/sec C. 4.12 rad/sec D. 3.24 rad/sec

Last Answer : D. 3.24 rad/sec

Description : A single degree of freedom spring-mass system is subjected to a harmonic force of constant amplitude. For an excitation frequency of √3k/m , the ratio of the amplitude of steady state response to the static deflection of the spring is __________ A. 0.2 B. 0.5 C. 0.8 D. None of the above

Last Answer : B. 0.5

Description : For an under damped harmonic oscillator, resonance A Occurs when excitation frequency is greater than undamped natural frequency B Occurs when excitation frequency is less than undamped natural frequency C Occurs when excitation frequency is equal to undamped natural frequency D Never occurs

Last Answer : C Occurs when excitation frequency is equal to undamped natural frequency

Description : For an under damped harmonic oscillator, resonance a) occurs when excitation frequency is greater than undamped natural frequency b) occurs when excitation frequency is less than undamped natural frequency c) occurs when excitation frequency is equal to undamped natural frequency d) never occurs

Last Answer : c) occurs when excitation frequency is equal to undamped natural frequency

Description : For an underdamped harmonic oscillator, resonance ______. (A) occurs when excitation frequency is greater than the undamped natural frequency (B) occurs when excitation frequency is less than the ... ) occurs when excitation frequency is equal to the undamped natural frequency (D) never occurs

Last Answer : (C) occurs when excitation frequency is equal to the undamped natural frequency

Description : For an under damped harmonic oscillator, resonance a) occurs when excitation frequency is greater than undamped natural frequency b) occurs when excitation frequency is less than undamped natural frequency c) occurs when excitation frequency is equal to undamped natural frequency d) never occurs

Last Answer : c) occurs when excitation frequency is equal to undamped natural frequency

Description : If the spring mass system with m and spring stiffness k is taken to very high altitude, the natural frequency of longitudinal vibrations * 1 point (A) increases (B) decreases (C) remain unchanged (D) may increase or decrease depending upon the value of the mass

Last Answer : (C) remain unchanged

Description : If the spring mass system with m and spring stiffness k is taken to very high altitude , the natural frequency of longitudinal vibrations A) Increases B) Decreases C) Remain unchanged D) May be increase or decrease depending upon the value of the mass

Last Answer : C) Remain unchanged

Description : The relative amplitudes of different degrees of freedom in a two-degree-of-freedom system depend on the natural frequency.

Last Answer : True

Description : When a two-degree-of-freedom system is subjected to a harmonic force, the system vibrates at the a. frequency of applied force b. smaller natural frequency c. larger natural frequency d. None of the above

Last Answer : a. frequency of applied force

Description : Identify the given system [fixed--spring—mass—spring—mass—spring--fixed] A. Single Degree of Freedom System B. Several Degree of Freedom System C. Two Degree of Freedom System D. None

Last Answer : C. Two Degree of Freedom System

Description : In coulomb damping the frequency of damped vibrations is A Equal to that of undamped vibrations B Less than that of undamped vibrationsC More than that of undamped vibrations D Independent of the frequency of undamped vibration

Last Answer : A Equal to that of undamped vibrations

Description : In case of viscous damping the frequency of damped vibration is A) Equal to that of undamped vibrations B) Less than that of undamped vibrations C) Greater than that of undamped vibrations D) Independent than that of undamped vibrations

Last Answer : B) Less than that of undamped vibrations

Description : When the external force is acting on the vibrating body, the vibrations are said to be A. Natural Vibrations B. Forced Vibrations C. Loaded Vibrations D. Undamped Vibrations

Last Answer : B. Forced Vibrations

Description : In the diagram shown below, if rotor X and rotor Z rotate in same direction and rotor Y rotates in opposite direction, then specify the no of degree of freedom vibration.a. Three degree of freedom vibration b. Two degree of freedom vibration c. Single degree of freedom vibration d. None of the above

Last Answer : b. Two degree of freedom vibration

Description : If the mass moment of inertia is increased to four times, then what will be the effect on free torsional vibrations of a single motor system? a) Increases 4 times b) Increases 2 times c) Decreases 4 times d) Decreases 2 times

Last Answer : d) Decreases 2 times

Description : An increase in the mass moment of inertia results in ________ in vibration frequency. A. increase B. decrease C. unchanged D. none of the above

Last Answer : B. decrease

Description : The number of distinct natural frequencies for an n-degree-of-freedom system can be a. 1 b. ∞ c. n

Last Answer : c. n

Description : While calculating the natural frequency of a spring-mass system, the effect of the mass of the spring is accounted for by adding X times its value to the mass, where X is A 1/2 B 1/3 C 1/4 D 3⁄4

Last Answer : B 1/3

Description : While calculating the natural frequency of a spring-mass system, the effect of the mass of the spring is accounted for by adding X times its value to the mass, where X is A. 1/2 B. 1/3 C. 1/4 D. 3/4

Last Answer : B. 1/3

Description : While calculating the natural frequency of a spring-mass system, the effect of the B mass of the spring is accounted for by adding X times its value to the mass, where X is (A) 1/2 (B) 1/3 (C) 1/4 (D) 3/4

Last Answer : (B) 1/3

Description : While calculating the natural frequency of a spring-mass system, the effect of the mass of the spring is accounted for by adding X times its value to the mass, where X is a) 1/2 b) 1/3 c) 1/4 d) 3/4

Last Answer : b) 1/3

Description : While calculating the natural frequency of a spring-mass system, the effect of the mass of the spring is accounted for by adding X times its value to the mass, where X is a) 1/2 b) 1/3 c) 1/4 d) 3/4

Last Answer : b) 1/3

Description : The mass, stiffness, and damping matrices of a two-degree-of-freedom system are symmetric.

Last Answer : True

Description : The first critical speed of an automobile running on a sinusoidal road is calculated by (modeling it as a single degree of freedom system) A Resonance B Approximation C Superposition D Rayleigh quotient

Last Answer : A Resonance

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the differential equation for damped free vibrations having single degree of freedom. What will be the solution to this differential equation if the system is ... Φ) C x = (A - Bt) e - ωt D x = X e - ξωt (cos ω d t + Φ)

Last Answer : A x = (A + Bt) e – ωt

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the differential equation for damped free vibrations having single degree of freedom. What will be the solution to this differential equation if the system is ... ) C. x = (A - Bt) e - ωt D. x = X e - ξωt (cos ω d t + Φ

Last Answer : A. x = (A + Bt) e – ωt

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the A differential equation for damped free vibrations having single degree of freedom. What will be the solution to this differential equation if the system is ... (C)x = (A - Bt) e - ωt ( D )x = X e - ξωt (cos ω d t + Φ

Last Answer : ( A ) x = (A + Bt) e – ωt

Description : Co-ordinate coupling is an example of A. Single Degree of Freedom System B. Several Degree of Freedom System C. Two Degree of Freedom System D. None

Last Answer : C. Two Degree of Freedom System

Description : The first critical speed of an automobile running on a sinusoidal road is calculated by (modeling it as a single degree of freedom system) a) Resonance b) Approximation c) Superposition d) Rayleigh quotient

Last Answer : a) Resonance

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the differential equati damped free vibrations having single degree of freedom. What will be the solution to this differ equation if the system is critically ... c. x = (A - Bt) e - ωt d. x = X e - ξωt (cos ω d t + Φ)

Last Answer : a. x = (A + Bt) e – ωt

Description : The effect of damping on the natural frequency of the system is to A) Reduce it considerably B) Increase it considerably C) Reduce it marginally D) Increase it marginally

Last Answer : C) Reduce it marginally

Description : The response of an Undamped system under resonance will be a. very large b. infinity c. zero

Last Answer : b. infinity

Description : In which type of vibrations, amplitude of vibration goes on decreasing every cycle? A) Damped vibrations B) Undamped vibrations C) Both a. and b. D) None of the above

Last Answer : A) Damped vibrations

Description : Which type of vibrations are also known as transient vibrations? A) Undamped vibrations B) Damped vibrations C) Torsional vibrations D) Transverse vibrations

Last Answer : B) Damped vibrations

Description : The vibrations of the body with no resistance to its motion known as A. Damped Vibrations B. Undamped Vibrations C. Both D. None

Last Answer : B. Undamped Vibrations

Description : When no external force is acting on the vibrating body, the vibrations are said to be A. Free Vibrations B. Forced Vibrations C. Loaded Vibrations D. Undamped Vibrations

Last Answer : A. Free Vibrations

Description : In which type of vibrations, amplitude of vibration goes on decreasing every cycle? a. Damped vibrations b. Undamped vibrations c. Both a. and b. d. None of the above

Last Answer : a. Damped vibrations

Description : Which type of vibrations are also known as transient vibrations? a. Undamped b. Damped c. Torsional d. Transverse vibrations

Last Answer : b. Damped

Description : If the polar moment of inertia is increased to four times, then what will be the effect on free torsional vibrations of a single motor system? A. Increases 4 times B. Increases 2 times C. Decreases 4 times D. Decreases 2 times

Last Answer : B. Increases 2 times

Description : If the polar moment of inertia is increased to four times, then what will be the effect on free torsional vibrations of a single motor system? a) Increases 4 times b) Increases 2 times c) Decreases 4 times d) Decreases 2 times

Last Answer : b) Increases 2 times

Description : Reduction in vibration amplitude after one complete cycle of single degree free vibration with dry friction damping is_____, if where F"= frictional force between mass and surface and k =stiffness of the system. a)4F/k a b) 2f/K C) 3F/k D)8F/k

Last Answer : a)4F/k

Description : A mass of 1 kg is attached to two identical springs each with stiffness k = 20 kN/m as shown in the figure. Under frictionless condition, the natural frequency of the system in Hz is close to * 1 point (A) 32 (B) 23 (C) 16 (D) 11

Last Answer : (A) 32

Description : The natural frequency of a spring-mass system on earth is ωn. The natural frequency of this system on the moon (g of moon = g of earth /6) is * 1 point (A) ωn (B) 0.408ωn (C) 0.204ωn (D) 0.167ωn

Last Answer : (A) ωn

Description : The static deflection of a spring under gravity, when a mass of 1 kg is suspended from it, is 1 mm. Assume the acceleration due to gravity g = 10 m/s^2. The natural frequency of this spring-mass system (in rad/s) is A 100 B 150 C 200 D 250

Last Answer : A 100

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 30000 N/m and mass of 20 kg? A 12.32 Hz B 4.10 Hz C 6.16 HzD None of the above

Last Answer : C 6.16 Hz

Description : A spring mass system has time period of oscillation of 0.25 sec. What will be the natural frequency of the system? A 1 Hz B 2 rad sec C 4 rad/sec D 4 Hz

Last Answer : D 4 Hz