Co-ordinate coupling is an example of
A. Single Degree of Freedom System
B. Several Degree of Freedom System
C. Two Degree of Freedom System
D. None

1 Answer

Answer :

C. Two Degree of Freedom System

Related questions

Description : Identify the given system [fixed--spring—mass—spring—mass—spring--fixed] A. Single Degree of Freedom System B. Several Degree of Freedom System C. Two Degree of Freedom System D. None

Last Answer : C. Two Degree of Freedom System

Description : The first critical speed of an automobile running on a sinusoidal road is calculated by (modeling it as a single degree of freedom system) A Resonance B Approximation C Superposition D Rayleigh quotient

Last Answer : A Resonance

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the differential equation for damped free vibrations having single degree of freedom. What will be the solution to this differential equation if the system is ... Φ) C x = (A - Bt) e - ωt D x = X e - ξωt (cos ω d t + Φ)

Last Answer : A x = (A + Bt) e – ωt

Description : What is the effect on the undamped natural frequency of a single-degree-of-freedom system if the mass of the system is increased? A The frequency will increase B The frequency will stay the same C The frequency will decrease D None of these

Last Answer : C The frequency will decrease

Description : A single degree of freedom spring-mass system is subjected to a harmonic force of constant amplitude. For an excitation frequency of √3k/m , the ratio of the amplitude of steady state response to the static deflection of the spring is __________ A. 0.2 B. 0.5 C. 0.8 D. None of the above

Last Answer : B. 0.5

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the differential equation for damped free vibrations having single degree of freedom. What will be the solution to this differential equation if the system is ... ) C. x = (A - Bt) e - ωt D. x = X e - ξωt (cos ω d t + Φ

Last Answer : A. x = (A + Bt) e – ωt

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the A differential equation for damped free vibrations having single degree of freedom. What will be the solution to this differential equation if the system is ... (C)x = (A - Bt) e - ωt ( D )x = X e - ξωt (cos ω d t + Φ

Last Answer : ( A ) x = (A + Bt) e – ωt

Description : What is the effect on the undamped natural frequency of a single-degree-of- C freedom system if the mass of the system is increased? ( A ) The frequency will increase ( B ) The frequency will stay the same ( C ) The frequency will decrease ( D ) None of these

Last Answer : ( C ) The frequency will decrease

Description : The first critical speed of an automobile running on a sinusoidal road is calculated by (modeling it as a single degree of freedom system) a) Resonance b) Approximation c) Superposition d) Rayleigh quotient

Last Answer : a) Resonance

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the differential equati damped free vibrations having single degree of freedom. What will be the solution to this differ equation if the system is critically ... c. x = (A - Bt) e - ωt d. x = X e - ξωt (cos ω d t + Φ)

Last Answer : a. x = (A + Bt) e – ωt

Description : What is the effect on the undamped natural frequency of a single-degree-of-freedom system if the stiffness of one or more of the springs is increased? (A) The frequency will increase (B) The frequency will stay the same (C) The frequency will decrease (D) None of these

Last Answer : (A) The frequency will increase

Description : What is the effect on the undamped natural frequency of a single-degree-of-freedom system if the mass of the system is increased? A) The frequency will increase (B) The frequency will stay the same (C) The frequency will decrease (D) None of these

Last Answer : (C) The frequency will decrease

Description : In the diagram shown below, if rotor X and rotor Z rotate in same direction and rotor Y rotates in opposite direction, then specify the no of degree of freedom vibration.a. Three degree of freedom vibration b. Two degree of freedom vibration c. Single degree of freedom vibration d. None of the above

Last Answer : b. Two degree of freedom vibration

Description : The equations of motion of a two degree of freedom system, are, in general: A. coupled B. linear C. uncoupled D. none of the above

Last Answer : A. coupled

Description : In two degree of freedom system, the number of coordinates required to specify the motion of system are A. One B. Two C. Three D. Four

Last Answer : B. Two

Description : In two degree of freedom system, the numbers of amplitude observed are A. OneB. Two C. Three D. None

Last Answer : B. Two

Description : The equations of motion of a two-degree-of-freedom system can be expressed in terms of the displacement of either of the two masses.

Last Answer : True

Description : The relative amplitudes of different degrees of freedom in a two-degree-of-freedom system depend on the natural frequency.

Last Answer : True

Description : The mass, stiffness, and damping matrices of a two-degree-of-freedom system are symmetric.

Last Answer : True

Description : When a two-degree-of-freedom system is subjected to a harmonic force, the system vibrates at the a. frequency of applied force b. smaller natural frequency c. larger natural frequency d. None of the above

Last Answer : a. frequency of applied force

Description : The number of distinct natural frequencies for an n-degree-of-freedom system can be a. 1 b. ∞ c. n

Last Answer : c. n

Description : What are discrete parameter systems? *1 point (A) Systems which have infinite number of degree of freedom (B) Systems which have finite number of degree of freedom (C) Systems which have no degree of freedom (D) None of the above

Last Answer : (B) Systems which have finite number of degree of freedom

Description : What are discrete parameter systems? A. Systems which have infinite number of degree of freedom B. Systems which have finite number of degree of freedom C. Systems which have no degree of freedom D. None of the above

Last Answer : B. Systems which have finite number of degree of freedom

Description : What are discrete parameter systems?a. Systems which have infinite number of degree of freedom b. Systems which have finite number of degree of freedom c. Systems which have no degree of freedom d. None of the above

Last Answer : b. Systems which have finite number of degree of freedom

Description : In a 2-mass 3 spring vibrating system the two masses each are of 9.8 kg coupling spring is having a stiffness of 3430 N/m whereas the other two springs have each a stiffness of 8820 N/m. The two natural frequencies in rad /sec are A) 10 & 20 B) 20 & 30 C) 30 & 40D) 40 & 50

Last Answer : C) 30 & 40

Description : Reduction in vibration amplitude after one complete cycle of single degree free vibration with dry friction damping is_____, if where F"= frictional force between mass and surface and k =stiffness of the system. a)4F/k a b) 2f/K C) 3F/k D)8F/k

Last Answer : a)4F/k

Description : The number of degrees of freedom in simple spring mass system is A. Zero B. One C. Two D. Three

Last Answer : B. One

Description : The number of degrees of freedom of a vibrating system depends on a. number of masses b. number of masses and degrees of freedom of each mass c. number of coordinates used to describe the position of each mass d. None of the above

Last Answer : b. number of masses and degrees of freedom of each mass

Description : During free vibration, different degrees of freedom oscillate at different frequencies.

Last Answer : False

Description : During free vibration, different degrees of freedom oscillate with different phase angles.

Last Answer : False

Description : The number of degrees of freedom of a simple pendulum is: (a) 0 (b) 1 (c) 2

Last Answer : (b) 1

Description : Explain absolute and incremental co-ordinate systems, with suitable example. 

Last Answer : 1. Absolute Co- ordinate system: In Cartesian co ordinate geometry system using absolute measurement. Each point is always specified using same zero of given co ordinate system as shown in fig. It is ... to the system as a distance increment, measured from preceding point. Example:    

Description : If the polar moment of inertia is increased to four times, then what will be the effect on free torsional vibrations of a single motor system? A. Increases 4 times B. Increases 2 times C. Decreases 4 times D. Decreases 2 times

Last Answer : B. Increases 2 times

Description : Calculate the Polar moment of inertia in m 4 of a single motor system from the following data: C = 8 GN/m 2 , L=9m, I = 600 Kg-m 2 , f=10 Hz a) 0.00027b) 0.00032 c) 0.00045 d) 0.00078

Last Answer : a) 0.00027

Description : f the length inertia is decreased to nine times, then what will be the effect on free torsional vibrations of a single motor system? a) Increases 3 times b) Increases 9 times c) Decreases 9 times d) Decreases 3 times

Last Answer : a) Increases 3 times

Description : Calculate the free torsional vibrations of a single motor system from the following data: C = 8 GN/m 2 , L=9m, I = 600 Kg-m 2 , J = 8×10 4 m 4 a) 162,132 b) 172,132 c) 182,132 d) 192,132

Last Answer : b) 172,132

Description : If the mass moment of inertia is increased to four times, then what will be the effect on free torsional vibrations of a single motor system? a) Increases 4 times b) Increases 2 times c) Decreases 4 times d) Decreases 2 times

Last Answer : d) Decreases 2 times

Description : If the polar moment of inertia is increased to four times, then what will be the effect on free torsional vibrations of a single motor system? a) Increases 4 times b) Increases 2 times c) Decreases 4 times d) Decreases 2 times

Last Answer : b) Increases 2 times

Description : Free torsional vibrations of a single motor system increases with increase in polar moment of inertia. a) True b) False

Last Answer : b) False

Description : Which of the following relation is correct regarding free torsional vibrations of a single motor system? a) Independent of modulus of rigidity b) Independent of polar moment of inertia c) Dependent on mass moment of inertia d) Independent of length of shaft

Last Answer : c) Dependent on mass moment of inertia

Description : In a cartesian co-ordinate system, the coordinates of two points P and Q are (2, 4, 4) and (-2, -3, 7) respectively

Last Answer : In a cartesian co-ordinate system, the coordinates of two points P and Q are (2, 4, 4) ... find \(\overset\longrightarrow{PQ}\) and its magnitude.

Description : Any convenient co-ordinate system or Cartesian co-ordinates which can be usedto define the picture is called a.spherical co-ordinates b.vector co-ordinates c.viewport co-ordinates d.world co-ordinates

Last Answer : d.world co-ordinates

Description : The window opened on the raster graphics screen in which the image will bedisplayed is called a.World co-ordinate system b.Screen co-ordinate system c.World window d.Interface window

Last Answer : d.Interface window

Description : What is the rectangle in the world defining the region that is to be displayed? a.World co-ordinate system b.Screen co-ordinate system c.World window d.Interface window

Last Answer : c.World window

Description : What is the name of the space in which the image is displayed? a.World co-ordinate system b.Screen co-ordinate system c.World window d.Interface window

Last Answer : b.Screen co-ordinate system

Description : The object space or the space in which the application model is defined is called a.World co-ordinate system b.Screen co-ordinate system c.World window d.Interface window

Last Answer : a.World co-ordinate system

Description : In the diagram shown below, if rotor X and rotor Z rotate in same direction and rotor Y rotates in opposite direction, then specify the type of node vibration. A. Three node vibration B. Two node vibration C. Single node vibration D. None of the above

Last Answer : B. Two node vibration

Description : In the diagram shown below, if rotor X and rotor Z rotate in same direction and rotor Y rotates in opposite direction, then specify the type of node vibration. A. Three node vibration B. Two node vibration C. Single node vibration D. None of the above

Last Answer : B. Two node vibration

Description : SHM stands for A. Single Harmonic Motion B. Simple Harmonic Motion C. Simple Harmonic Mechanism D. None of the above

Last Answer : B. Simple Harmonic Motion