Identify the given system
[fixed--spring—mass—spring—mass—spring--fixed]
A. Single Degree of Freedom System
B. Several Degree of Freedom System
C. Two Degree of Freedom System
D. None

1 Answer

Answer :

C. Two Degree of Freedom System

Related questions

Description : A single degree of freedom spring-mass system is subjected to a harmonic force of constant amplitude. For an excitation frequency of √3k/m , the ratio of the amplitude of steady state response to the static deflection of the spring is __________ A. 0.2 B. 0.5 C. 0.8 D. None of the above

Last Answer : B. 0.5

Description : Co-ordinate coupling is an example of A. Single Degree of Freedom System B. Several Degree of Freedom System C. Two Degree of Freedom System D. None

Last Answer : C. Two Degree of Freedom System

Description : What is the effect on the undamped natural frequency of a single-degree-of-freedom system if the mass of the system is increased? A The frequency will increase B The frequency will stay the same C The frequency will decrease D None of these

Last Answer : C The frequency will decrease

Description : What is the effect on the undamped natural frequency of a single-degree-of- C freedom system if the mass of the system is increased? ( A ) The frequency will increase ( B ) The frequency will stay the same ( C ) The frequency will decrease ( D ) None of these

Last Answer : ( C ) The frequency will decrease

Description : What is the effect on the undamped natural frequency of a single-degree-of-freedom system if the mass of the system is increased? A) The frequency will increase (B) The frequency will stay the same (C) The frequency will decrease (D) None of these

Last Answer : (C) The frequency will decrease

Description : The number of degrees of freedom in simple spring mass system is A. Zero B. One C. Two D. Three

Last Answer : B. One

Description : The mass, stiffness, and damping matrices of a two-degree-of-freedom system are symmetric.

Last Answer : True

Description : The first critical speed of an automobile running on a sinusoidal road is calculated by (modeling it as a single degree of freedom system) A Resonance B Approximation C Superposition D Rayleigh quotient

Last Answer : A Resonance

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the differential equation for damped free vibrations having single degree of freedom. What will be the solution to this differential equation if the system is ... Φ) C x = (A - Bt) e - ωt D x = X e - ξωt (cos ω d t + Φ)

Last Answer : A x = (A + Bt) e – ωt

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the differential equation for damped free vibrations having single degree of freedom. What will be the solution to this differential equation if the system is ... ) C. x = (A - Bt) e - ωt D. x = X e - ξωt (cos ω d t + Φ

Last Answer : A. x = (A + Bt) e – ωt

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the A differential equation for damped free vibrations having single degree of freedom. What will be the solution to this differential equation if the system is ... (C)x = (A - Bt) e - ωt ( D )x = X e - ξωt (cos ω d t + Φ

Last Answer : ( A ) x = (A + Bt) e – ωt

Description : The first critical speed of an automobile running on a sinusoidal road is calculated by (modeling it as a single degree of freedom system) a) Resonance b) Approximation c) Superposition d) Rayleigh quotient

Last Answer : a) Resonance

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the differential equati damped free vibrations having single degree of freedom. What will be the solution to this differ equation if the system is critically ... c. x = (A - Bt) e - ωt d. x = X e - ξωt (cos ω d t + Φ)

Last Answer : a. x = (A + Bt) e – ωt

Description : What is the effect on the undamped natural frequency of a single-degree-of-freedom system if the stiffness of one or more of the springs is increased? (A) The frequency will increase (B) The frequency will stay the same (C) The frequency will decrease (D) None of these

Last Answer : (A) The frequency will increase

Description : In a spring mass system of mass m and stiffness k, the end of the spring are securely fixed and mass is attached to intermediate point of spring. The natural frequency of longitudinal ... is attached decreases D) Decreases as the distance from the bottom end where mass is attached decreases

Last Answer : B) Is minimum when mass is attached to mid point of the spring

Description : In the diagram shown below, if rotor X and rotor Z rotate in same direction and rotor Y rotates in opposite direction, then specify the no of degree of freedom vibration.a. Three degree of freedom vibration b. Two degree of freedom vibration c. Single degree of freedom vibration d. None of the above

Last Answer : b. Two degree of freedom vibration

Description : Reduction in vibration amplitude after one complete cycle of single degree free vibration with dry friction damping is_____, if where F"= frictional force between mass and surface and k =stiffness of the system. a)4F/k a b) 2f/K C) 3F/k D)8F/k

Last Answer : a)4F/k

Description : The equations of motion of a two degree of freedom system, are, in general: A. coupled B. linear C. uncoupled D. none of the above

Last Answer : A. coupled

Description : In two degree of freedom system, the number of coordinates required to specify the motion of system are A. One B. Two C. Three D. Four

Last Answer : B. Two

Description : In two degree of freedom system, the numbers of amplitude observed are A. OneB. Two C. Three D. None

Last Answer : B. Two

Description : The equations of motion of a two-degree-of-freedom system can be expressed in terms of the displacement of either of the two masses.

Last Answer : True

Description : The relative amplitudes of different degrees of freedom in a two-degree-of-freedom system depend on the natural frequency.

Last Answer : True

Description : When a two-degree-of-freedom system is subjected to a harmonic force, the system vibrates at the a. frequency of applied force b. smaller natural frequency c. larger natural frequency d. None of the above

Last Answer : a. frequency of applied force

Description : The number of distinct natural frequencies for an n-degree-of-freedom system can be a. 1 b. ∞ c. n

Last Answer : c. n

Description : What are discrete parameter systems? *1 point (A) Systems which have infinite number of degree of freedom (B) Systems which have finite number of degree of freedom (C) Systems which have no degree of freedom (D) None of the above

Last Answer : (B) Systems which have finite number of degree of freedom

Description : What are discrete parameter systems? A. Systems which have infinite number of degree of freedom B. Systems which have finite number of degree of freedom C. Systems which have no degree of freedom D. None of the above

Last Answer : B. Systems which have finite number of degree of freedom

Description : What are discrete parameter systems?a. Systems which have infinite number of degree of freedom b. Systems which have finite number of degree of freedom c. Systems which have no degree of freedom d. None of the above

Last Answer : b. Systems which have finite number of degree of freedom

Description : The number of degrees of freedom of a vibrating system depends on a. number of masses b. number of masses and degrees of freedom of each mass c. number of coordinates used to describe the position of each mass d. None of the above

Last Answer : b. number of masses and degrees of freedom of each mass

Description : In a 2-mass 3 spring vibrating system the two masses each are of 9.8 kg coupling spring is having a stiffness of 3430 N/m whereas the other two springs have each a stiffness of 8820 N/m. The two natural frequencies in rad /sec are A) 10 & 20 B) 20 & 30 C) 30 & 40D) 40 & 50

Last Answer : C) 30 & 40

Description : If the spring mass system with m and spring stiffness k is taken to very high altitude, the natural frequency of longitudinal vibrations * 1 point (A) increases (B) decreases (C) remain unchanged (D) may increase or decrease depending upon the value of the mass

Last Answer : (C) remain unchanged

Description : The natural frequency of a spring-mass system on earth is ωn. The natural frequency of this system on the moon (g of moon = g of earth /6) is * 1 point (A) ωn (B) 0.408ωn (C) 0.204ωn (D) 0.167ωn

Last Answer : (A) ωn

Description : The static deflection of a spring under gravity, when a mass of 1 kg is suspended from it, is 1 mm. Assume the acceleration due to gravity g = 10 m/s^2. The natural frequency of this spring-mass system (in rad/s) is A 100 B 150 C 200 D 250

Last Answer : A 100

Description : A vehicle suspension system consists of a spring and a damper. Stiffness of spring is 3.5 KN/m and damping constant of damper is 400Ns/m. If mass is 50 kg, then damping factor is A 0.606 B 0.10 C 0.666 D 0.471

Last Answer : D 0.471

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 30000 N/m and mass of 20 kg? A 12.32 Hz B 4.10 Hz C 6.16 HzD None of the above

Last Answer : C 6.16 Hz

Description : In a spring-mass system, which of the following force is not considered? A Spring force B Damping force C Accelerating force D A and B

Last Answer : B Damping force

Description : A mass of 10 kg when suspended from a spring causes a static deflection of 0.01m. Find the spring stiffness for the same system. A 9810 N/m B 8910 N/m C 1098 N/m D 9801 N/m

Last Answer : A 9810 N/m

Description : While calculating the natural frequency of a spring-mass system, the effect of the mass of the spring is accounted for by adding X times its value to the mass, where X is A 1/2 B 1/3 C 1/4 D 3⁄4

Last Answer : B 1/3

Description : A vibrating system having mass 1kg, a spring of stiffness 1000N/m and damping factor of 0.632 and it is put to harmonic excitation of 10N. Find the amplitude at resonance. A 0.079 B 7.9C 0.056 D 0.00791

Last Answer : D 0.00791

Description : A spring mass system has time period of oscillation of 0.25 sec. What will be the natural frequency of the system? A 1 Hz B 2 rad sec C 4 rad/sec D 4 Hz

Last Answer : D 4 Hz

Description : A mass of 10 kg when suspended from a spring causes a static deflection of 0.01m. Find the spring stiffness for the same system. A 9810 N/m B 8910 N/m C 1098 N/m D 9801 N/m

Last Answer : D 9801 N/m

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 43200 N/m and mass of 12 kg. A 40.22 rad/sec B 40 Hz C 60 Hz D 60 rad/sec

Last Answer : D 60 rad/sec

Description : While calculating the natural frequency of a spring-mass system, the effect of the mass of the spring is accounted for by adding X times its value to the mass, where X is A. 1/2 B. 1/3 C. 1/4 D. 3/4

Last Answer : B. 1/3

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 30000 N/m and mass of 20 kg? A. 12.32 Hz B. 4.10 Hz C. 6.16 Hz D. None of the above

Last Answer : C. 6.16 Hz

Description : Calculate coefficient of viscous damper, if the system is critically damped. Consider the following data: 1. Mass of spring mass damper system = 350 kg 2. Static deflection = 2 x 10 -3 m 3. Natural frequency of the system = 60 rad/sec ... /m B. 80 x 10 3 N-s/m C. 42 x 10 3 N-s/m D. None of the above

Last Answer : C. 42 x 10 3 N-s/m

Description : Calculate damped natural frequency, if a spring mass damper system is subjected to periodic disturbing force of 30 N. Damping coefficient is equal to 0.76 times of critical damping coefficient and undamped natural frequency is 5 rad/sec A. 3.99 rad/sec B. 2.13 rad/sec C. 4.12 rad/sec D. 3.24 rad/sec

Last Answer : D. 3.24 rad/sec

Description : A system has a mass of 0.5 kg and spring stiffness of 2452 N/m. Find the natural frequency of the system. A. 5.14 Hz B. 9.14 Hz C. 11.14 Hz D. 28.14 Hz

Last Answer : C. 11.14 Hz

Description : A vertical spring-mass system has a mass of 0.5 kg and an initial deflection of 0.2 cm. Find the spring stiffness. A. 345 N/m B. 245 N/m C. 3452 N/mD. 2452 N/m

Last Answer : D. 2452 N/m

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 30000 N/m and mass of 20 kg? A) 12.32 Hz B) 4.10 Hz C) 6.16 Hz D) None of the above

Last Answer : C) 6.16 Hz

Description : If the spring mass system with m and spring stiffness k is taken to very high altitude , the natural frequency of longitudinal vibrations A) Increases B) Decreases C) Remain unchanged D) May be increase or decrease depending upon the value of the mass

Last Answer : C) Remain unchanged

Description : In the spring mass system if the mass of the system is doubled with spring stiffness halved, the natural frequency of longitudinal vibration A) Remained unchanged B) Is doubled C) Is halved D) Is quadruped

Last Answer : C) Is halved