Which of the following statements is/are true for coulomb damping?
1. Coulomb damping occurs due to friction between two lubricated surfaces2. Damping force is opposite to the direction of motion of vibrating body
3. For smooth surfaces, coefficient of friction depends upon velocity
4. Damping force depends upon the rubbing velocity between two rubbing surfaces
a. Only statement 1
b. Statement 2, 3 and statement 4
c. Only statement 2
d. All the above statements are true

1 Answer

Answer :

c. Only statement 2

Related questions

Description : Coulomb friction is the friction between  (A) Bodies having relative motion  (B) Two dry surfaces  (C) Two lubricated surfaces  (D) Solids and liquids 

Last Answer : (A) Bodies having relative motion 

Description : Coulomb friction is a.Friction between solids and liquids b.Friction between electrically charged bodies c.Friction between lubricated surface d.Friction between dry surfaces e.Friction between bodies having relative motion

Last Answer : d. Friction between dry surfaces

Description : When parts of a vibrating system slide on a dry surface, the damping is A. Viscous. B. Coulomb C. Structural D. Eddy current

Last Answer : B. Coulomb

Description : In which direction does the damping force acts? a) Opposite to the motion b) Along the motion c) Perpendicular to motion d) Variable

Last Answer : a) Opposite to the motion

Description : The equivalent viscous damping coefficient Ceq for coulomb damping is given by A) 4F/πωx B) 4πF/ωx C) πωx/4F D) ωx/4Πf

Last Answer : A) 4F/πωx

Description : Eddy current damping is an example of _____ A Coulomb damping B Hysteresis damping C Viscous damping D Dry friction damping

Last Answer : C Viscous damping

Description : Eddy current damping is an example of _____A. Coulomb damping B. Hysteresis damping C. Viscous damping D. Dry friction damping

Last Answer : C. Viscous damping

Description : Eddy current damping is an example of _____ A) Coulomb damping B) Hysteresis damping C) Viscous damping D) Dry friction damping

Last Answer : C) Viscous damping

Description : Eddy current damping is an example of _____ a. Coulomb damping b. Hysteresis damping c. Viscous damping d. Dry friction damping

Last Answer : c. Viscous damping

Description : Calculate the value of critical damping coefficient if a vibrating system has mass of 4kg and stiffness of 100N/m A 20 N-sec/m B 40 N-sec/m C 60 N-sec/m D 80 N-sec/m

Last Answer : B 40 N-sec/m

Description : In coulomb damping, the amplitude of motion in each cycle is reduced by A. F/K B. 2F/K C. 4F/K D. F/4K

Last Answer : C. 4F/K

Description : The equation of motion for a vibrating system with viscous damping is d 2 x/dt 2 + c/m X dx/dt + s/m X x = 0 If the roots of this equation are real, then the system will be A. over damped B. under damped C. critically damped D. none of the mentioned

Last Answer : A. over damped

Description : The equation of motion for a vibrating system with viscous damping is d 2 x/dt 2 + c/m X dx/dt + k/m X x = 0 If the roots of this equation are real, then the system will be a) over damped b) under damped c) critically damped d) none of the mentioned Ans:a

Last Answer : a) over damped

Description : The ratio of the maximum displacement of the forced vibration to the deflection due to the static force, is known as A Damping factor B Damping coefficient C Logarithmic decrement D Magnification factor

Last Answer : D Magnification factor

Description : The ratio of maximum displacement of the forced vibration to the deflection due to the static force, is known as A. Damping FactorB. Damping Coefficient C. Logarithmic Decrement D. Magnification Factor

Last Answer : D. Magnification Factor

Description : The ratio of the maximum displacement of the forced vibration to the deflection due to the static force, is known as a) Damping factor b) Damping coefficient c) Logarithmic decrement d) Magnification factor

Last Answer : d) Magnification factor

Description : The ratio of the maximum displacement of the forced vibration to the deflection due to the static force is known as (A) damping factor (B) damping coefficient (C) logarithmic decrement (D) magnification factor

Last Answer : (D) magnification factor

Description : The ratio of the maximum displacement of the forced vibration to the deflection due to the static force, is known as a) damping factor b) damping coefficient c) logarithmic decrement d) magnification factor

Last Answer : d) magnification factor

Description : The advantage of critical damping is A. That vibrating body come to rest in smallest possible time B. There is no vibration C. That amplitude of vibration is maximum D. The amplitude of vibration is minimum

Last Answer : A. That vibrating body come to rest in smallest possible time

Description : What is meant by critical damping coefficient? * 1 point (A) Frequency of damped free vibrations is less than zero (B). The motion is a periodic in nature (C). Both a. and b. (D). None of the above

Last Answer : (C). Both a. and b.

Description : What is meant by critical damping coefficient? A Frequency of damped free vibrations is less than zero B The motion is aperiodic in nature C Both a. and b. D None of the above

Last Answer : B The motion is aperiodic in nature

Description : What is meant by critical damping coefficient? B ( A )Frequency of damped free vibrations is less than zero ( B )The motion is aperiodic in nature ( C )Both a. and b. (D)None of the above

Last Answer : ( B )The motion is aperiodic in nature

Description : What is meant by critical damping coefficient? a. Frequency of damped free vibrations is less than zero b. The motion is aperiodic in nature c. Both a. and b. d. None of the above

Last Answer : b. The motion is aperiodic in nature

Description : The coefficient of friction depends upon (A) Nature of surfaces (B) Area of contact (C) Shape of the surfaces (D) All of the above

Last Answer : (A) Nature of surfaces

Description : Determine the viscous damping coefficient if damper offers resistance 0.05N at constant velocity 0.04m/sec A 0.8N-sec/m B 1.5N-sec/m C 2.5N-sec/m D 1.25N-sec/m

Last Answer : D 1.25N-sec/m

Description : A rotary system has a damping coefficient of 40 N-m-sec/rad. The damping torque at a velocity of 2 rad/s, will be A) 20 N-m B) 40 N-m C) 80 N-m D) 100 N-m

Last Answer : C) 80 N-m

Description : The damping is used to control the __________ of body. A. Force B. Viscosity C. Motion D. None

Last Answer : C. Motion

Description : In coulomb damping the frequency of damped vibrations is A Equal to that of undamped vibrations B Less than that of undamped vibrationsC More than that of undamped vibrations D Independent of the frequency of undamped vibration

Last Answer : A Equal to that of undamped vibrations

Description : Following are the types of damping A. Viscous Damping B. Coulomb Damping C. Hysteresis Damping D. All the above

Last Answer : D. All the above

Description : When a system vibrates in a fluid medium, the damping is (a) viscous (b) Coulomb (c) solid

Last Answer : (a) viscous

Description : Kinetic friction is a.Maximum value of frictional force when a body is about to move b.Friction between two well lubricated bodies c.Friction force acting when the body is in motion d.Driction force which keeps a body in motion e.None of the above

Last Answer : c. Friction force acting when the body is in motion

Description : Calculate damped natural frequency, if a spring mass damper system is subjected to periodic disturbing force of 30 N. Damping coefficient is equal to 0.76 times of critical damping coefficient and undamped natural frequency is 5 rad/sec A. 3.99 rad/sec B. 2.13 rad/sec C. 4.12 rad/sec D. 3.24 rad/sec

Last Answer : D. 3.24 rad/sec

Description : A vibrating system having mass 1kg, a spring of stiffness 1000N/m and damping factor of 0.632 and it is put to harmonic excitation of 10N. Find the amplitude at resonance. A 0.079 B 7.9C 0.056 D 0.00791

Last Answer : D 0.00791

Description : A system is said to be critically damped if the damping factor for a vibrating system is A Zero B Less than one C One D More than one

Last Answer : C One

Description : If the damping factor for a vibrating system is unity, then the system will be (A) overdamped (B) underdamped (C) critically damped (D) without vibrations

Last Answer : (C) critically damped

Description : Reduction in vibration amplitude after one complete cycle of single degree free vibration with dry friction damping is_____, if where F"= frictional force between mass and surface and k =stiffness of the system. a)4F/k a b) 2f/K C) 3F/k D)8F/k

Last Answer : a)4F/k

Description : Which of the following relations is true for viscous damping? A) Force α relative displacement B) Force α relative velocity C) Force α (1 / relative velocity) D) None of the above

Last Answer : B) Force α relative velocity

Description : Which of the following relations is true for viscous damping? a. Force α relative displacement b. Force α relative velocity c. Force α (1 / relative velocity) d. None of the above

Last Answer : b. Force α relative velocity

Description : n which direction does the accelerating force acts? a) Opposite to the motion b) Along the motion c) Perpendicular to motion d) Variable

Last Answer : b) Along the motion

Description : In vibrometer, the relative motion between the mass and vibrating body is converted into proportional ________. (A) current (B) voltage (C) resistance (D) ampere

Last Answer : (B) voltage

Description : A seismometer is a device used to measure the ___________ of a vibrating body. (A) displacement (B) velocity (C) acceleration (D) all of the above

Last Answer : (A) displacement

Description : A seismometer is a device used to measure the ___________ of a vibrating body. (A) displacement (B) velocity (C) acceleration (D) all of the above

Last Answer : (A) displacement

Description : The instruments which are used to measure the ___________ of a vibrating body are called vibration measuring instrument. (A) displacement (B) velocity (C) acceleration (D) all of the above

Last Answer : (D) all of the above

Description : Consider tile following statements: [IES-1993; 2002; 2006] Radius of friction circle for a journal bearing depends upon 1. Coefficient of friction 2. Radius of the journal 3. Angular speed of rotation of the shaft Which of the ... ) 1,2 and 3 (b) Only 1 and 2 (c) Only 2 and 3 (d) Only 1 and 3

Last Answer : (b) Only 1 and 2

Description : Incorrect statement for co-efficient of friction could be that A. The coefficient of friction is denoted by the Greek letter µ. B. The coefficient of friction is directly proportional to ... D. The coefficient of friction is inversely proportional to the force pressing the surfaces together

Last Answer : The coefficient of friction is constant even in the conditions of fast slipping and high contact pressure

Description : When no external force is acting on the vibrating body, the vibrations are said to be A. Free Vibrations B. Forced Vibrations C. Loaded Vibrations D. Undamped Vibrations

Last Answer : A. Free Vibrations

Description : When the external force is acting on the vibrating body, the vibrations are said to be A. Natural Vibrations B. Forced Vibrations C. Loaded Vibrations D. Undamped Vibrations

Last Answer : B. Forced Vibrations

Description : The number of degrees of freedom of a vibrating system depends on a. number of masses b. number of masses and degrees of freedom of each mass c. number of coordinates used to describe the position of each mass d. None of the above

Last Answer : b. number of masses and degrees of freedom of each mass

Description : The coefficient of friction depends on (A) Area of contact (B) Shape of surfaces (C) Strength of surfaces (D) Nature of surface

Last Answer : (D) Nature of surface