Resilience under principal tensile stresses σ1 and σ2 is

(a) (1/2E)( σ1 2 + σ2 2 –μ σ1 σ2)

(b) (1/2E)( σ1 2 + σ2 2 –4μ σ1 σ2)

(c) (1/2E)( σ1 2 + σ2 2 –2μ σ1 σ2)

(d) None

1 Answer

Answer :

(c) (1/2E)( σ1 2 + σ2 2 –2μ σ1 σ2)

Related questions

Description : Resilience under principal tensile stresses σ1 and σ2 is (a) (1/2E)( σ1 2 + σ2 2 –3μ σ1 σ2) (b) (1/2E)( σ1 2 + σ2 2 –4μ σ1 σ2) (c) (1/2E)( σ1 2 + σ2 2 –5μ σ1 σ2) (d) None

Last Answer : (d) None

Description : Resilience under principal tensile stresses σ1 and σ2 is (a) (1/2E)( σ1 2 + σ2 2 –3μ σ1 σ2) (b) (1/2E)( σ1 2 + σ2 2 –4μ σ1 σ2) (c) (1/2E)( σ1 2 + σ2 2 –5μ σ1 σ2) (d) None

Last Answer : (d) None

Description : Maximum total strain energy is equal to (a) (σ1 2 +σ2 2 )/2E (b) ( σ1 2 +σ2 2 + 2μ σ1 σ2)/2E (c) ( σ1 2 +σ2 2 — 2μ σ1 σ2)/2E (d) None

Last Answer : (c) ( σ1 2 +σ2 2 — 2μ σ1 σ2)/2E

Description : Shear strain energy under principal tensile stresses σ1 and σ2 is (a) (1/12E) (σ1 — σ2) 2 + σ2 2 — σ1 2 ) (b) (1/12G) (σ1 — σ2) 2 + σ2 2 + σ1 2 ) (c) (1/12K) (σ1 — σ2) 2 + σ2 2 + σ1 2 ) (d) None

Last Answer : (b) (1/12G) (σ1 — σ2) 2 + σ2 2 + σ1 2 )

Description : The total strain energy for a unit cube subjected to three principal stresses is given by? a) U= [(σέ) 1 + (σέ) 2+ (σέ) 3]/3 b) U= [(σ12+σ22+σ32)/2E] – (σ1σ2+σ2σ3+σ3σ1)2μ c) U= [(σέ) 1 + (σέ) 2+ (σέ) 3]/4 d) None of the mentioned

Last Answer : b) U= [(σ12+σ22+σ32)/2E] – (σ1σ2+σ2σ3+σ3σ1)2μ

Description : Maximum principal strain is equal to when σ1 and σ2 are tensile (a) (σ1 –μσ2)/E (b) (σ1 + μσ2)/E (c) (–σ1 –μσ2)/E (d) None

Last Answer : (a) (σ1 –μσ2)/E

Description : The principal strain due to σ1(tensile) and σ2 (Compressive ) stress is (a) Firstly (b)Secondly (c)Thirdly (d) None

Last Answer : (b)Secondly

Description : Maximum shear stress is equal to (a) (σ1 –σ2)/2 (b) (σ1 + σ2)/2 (c) (σ1 + 2σ2)/2 (d) None

Last Answer : (a) (σ1 –σ2)/2

Description : In the analysis, all the principal stresses are assumed as a. Shear stresses b. Compressive stresses c. Tensile stresses d. None

Last Answer : c. Tensile stresses

Description : Nature of the three principal stresses is a. Firstly All tensile b. Secondly All compressive c. Thirdly All shear d. None

Last Answer : a. Firstly All tensile

Description : The equations for principal stresses are valid only when (a)σ x and σ y are both tensile (b) σ x is compressive and σ y is tensile (c) σ x is tensile and σ y is compressive (d) None

Last Answer : (a)σ x and σ y are both tensile

Description : Transverse fillet welds are under (i) Bending and shear stresses (ii)Compressive and torsion shear stresses (iii)Tensile and compressive stresses (iv)None

Last Answer : (iv)None

Description : Parallel fillet welds are under  Shear and bending stresses  Compressive and torsion shear stresses  Tensile and compressive stresses  None

Last Answer :  None

Description : Under complex loading, principal stresses exist as (a) Firstly σ 1 > σ 2 =σ 3 (b) Secondly σ 1 = σ 2 =σ 3 (c) Thirdly σ 1 > σ 2 < σ 3 (d) None

Last Answer : (d) None

Description : In a body under pure shear, the magnitude and nature of the two principal stresses are a. Firstly Equals shear stress, opposite nature b. Secondly Equals shear stress, same nature c. Both (a) & (b) d. None

Last Answer : a. Firstly Equals shear stress, opposite nature

Description : The relationship between Young’s modulus (E), Bulk modulus (K) and Poisson’s ratio (μ) is given by a. E=2K(1-2μ) b. E=3K(1-2μ) c. E=2K(1-2μ) d. E=2K(1-3μ)

Last Answer : b. E=3K(1-2μ)

Description : Propagation of fatigue failure is always due to compressive stresses. a) Due to bending b) Due to tensile c) Due to fatigue d) None of the listed

Last Answer : b) Due to tensile

Description : Cotter joint is employed when the members are subjected to which sort of stresses? a) Axial tensile b) Axial compressive c) Axial tensile or compressive d) None of the above

Last Answer : c) Axial tensile or compressive

Description : Cotter joint is used when the members are subjected to which type of stresses? a) Axial tensile b) Axial compressive c) Axial tensile or compressive d) None of the mentioned

Last Answer : c) Axial tensile or compressive

Description : Symbols for principal stresses are a. Firstly σ, τ & γ b. Secondly σ 1 , σ 2 & σ 3

Last Answer : b. Secondly σ 1 , σ 2 & σ 3

Description : The maximum number of principal stresses is a. 1 b. 3 c. 5 d. None

Last Answer : b. 3

Description : The maximum number of principal stresses is a. 2 b. 4 c. 6 d. None

Last Answer : d. None

Description : Why do we determine principal stresses? a. Failure is due to simple stress or strain b. Failure is due to complex stress or strain c. Both (a) & (b) d. None

Last Answer : a. Failure is due to simple stress or strain

Description : Principal stresses are found by a. Analytical method b. Graphical method c. Analytical & graphical methods d. None

Last Answer : c. Analytical & graphical methods

Description : Maximum shear stress in terms of principal stresses is a. Firstly (σ 1 +σ 2 )/2 b. Secondly (σ 1 /σ 2 ) c. Thirdly (σ 1 –σ 2 )/2 d. None

Last Answer : c. Thirdly (σ 1 –σ 2 )/2

Description : How many maximum shear stresses are there with three principal stresses? a. 1 b. 2 c. 3 d. None

Last Answer : c. 3

Description : Principal stresses are a. Firstly Maximum and minimum shear stresses b. Secondly Maximum and minimum normal stresses c. Both (a) & (b) d. None

Last Answer : b. Secondly Maximum and minimum normal stresses

Description : The order of magnitude of the principal stresses is a. Firstly σ 1 >σ 2 >σ 3 b. Secondly σ 2 >σ 3 >σ 1 c. Thirdly σ 1 >σ 3 >σ 2 d. None

Last Answer : a. Firstly σ 1 >σ 2 >σ 3

Description : All the principal stresses are at an angle of (a)90 0 (b) 45 0 (c) 135 0 (d) None

Last Answer : (a)90 0

Description : All the principal stresses are at an angle of (a) 45 0 (b) 60 0 (c) 75 0 (d) None

Last Answer : (d) None

Description : The magnitude of principal stresses due to complex stresses is (a) (1/2)[ (σ x + σ y ) ± ((σ x –σ y ) 2 + 4 τ 2 )) 0.5 ] (b) (1/2)[ (σx + σy) ± (1/2)((σx –σy) 2 + 4 τ 2 )) 0.5 ] (c) (1/2)[ (σx + σy) ± ((1/2)(σx –σy) 2 + 4 τ 2 )) 0.5 ]

Last Answer : (a) (1/2)[ (σ x + σ y ) ± ((σ x –σ y ) 2 + 4 τ 2 )) 0.5 ]

Description : Maximum shear stress is (a) Average sum of principal stresses (b) Average difference of principal stresses (c) Average sum as well as difference of principal stresses (d) None

Last Answer : (b) Average difference of principal stresses

Description : There are in all (a) Two principal stresses (b) Three principal stresses (c) Four principal stresses (d) None

Last Answer : (b) Three principal stresses

Description : Which of the following stresses can be determined using Mohr's circle method? a. Torsional stress b. Bending stress c. Principal stress d. All of the above

Last Answer : c. Principal stress

Description : If compressive yield stress and tensile yield stress are equivalent, then region of safety from maximum principal stress theory is of which shape? a) Rectangle b) Square c) Circle d) Ellipse

Last Answer : b) Square

Description : A principal stress is a. Tensile or shear stress b. Compressive or shear stress c. Tensile or compressive stress d. None

Last Answer : c. Tensile or compressive stress

Description : A principal plane is a plane of (a) Zero tensile stress (b) Zero compressive stress (c) Zero shear stress (d) None

Last Answer : (c) Zero shear stress

Description : Which of the following facts are true for resilience? a) Ability of material to absorb energy when deformed elastically b) Ability to retain deformation under the application of load or after removal ... c) Ability of material to absorb energy when deformed plastically d) None of the mentioned

Last Answer : a) Ability of material to absorb energy when deformed elastically

Description : The ability of materials to develop a characteristic behavior under repeated loading known as ___________ a) Toughness b) Resilience c) Hardness d) Fatigue

Last Answer : d) Fatigue

Description : Modulus of resilience is defined as a) Strain energy per unit volume b) Strain energy per unit area c) Independent of strain energy d) None of the mentioned

Last Answer : a) Strain energy per unit volume

Description : Which of the following is measure of stiffness? a) Modulus of elasticity b) Modulus of plasticity c) Resilience d) Toughness

Last Answer : a) Modulus of elasticity

Description : Resilience is defined as the property of material to absorb energy when deformed _________ and to release this energy when unloaded. a) Elastically b) Plastically c) Up to fracture point d) None of the listed

Last Answer : a) Elastically

Description : Which of the following property is essential for spring materials? (A) Stiffness (B) Ductility (C) Resilience (D) Plasticity

Last Answer : (C) Resilience

Description : A full journal bearing having clearance to radius ratio of 1/100, using a lubricant with μ=28×10-3 Pa s supports the shaft journal running at N = 2400 rpm If bearing pressure is 1.4 MPa, the Somerfield number is [IES-2001] (a) 8×10-3 (b) 8×10-5 (c) 0.48 (d) 0.48×10

Last Answer : (a) S = (μN s /p) (r/c) 2

Description : If μ = absolute viscosity, N= speed of the journal and p = unit bearing pressure, then the bearing characteristic number is given by (A) μN/p (B) μp/N (C) pN/μ (D) μ/pN

Last Answer : (A) μN/p

Description : Torsional shear stresses are induced in the spring wire when (A) spring is under compression (B) spring is under tension (C) both (A) and (B) (D) none of the above

Last Answer : (C) both (A) and (B)

Description : How many angles of obliquity are there for a cuboidal body under complex stresses? a. 6 b. 8 c. 4 d. None

Last Answer : a. 6

Description : Parallel fillet welds are under (i) Shear stress (ii)Compressive stress (iii)Tensile stress (iv)None

Last Answer : (i) Shear stress

Description : Transverse fillet welds are under (i) Shear stress (ii) Compressive stress (iii) Tensile stress

Last Answer : (iii) Tensile stress