Angle of obliquity is defined as

a. Angle between the plane on which stresses are evaluated and one of the given planes

b. Angle between resultant stress and the plane of given normal stress

c. Angle between resultant stress and shear stress

d. Angle between resultant stress and normal stress

1 Answer

Answer :

d. Angle between resultant stress and normal stress

Related questions

Description : The angle of obliquity is the angle between the a. Firstly Resultant and the shear stress b. Secondly Resultant & the normal stress c. Both (a) & (b) d. None

Last Answer : b. Secondly Resultant & the normal stress

Description : Ellipse of stress is used to find a. Resultant stress on any plane in a bi-axial stress system b. Resultant stress on any plane in a general two dimensional system c. Maximum shear stress d. Location of planes of maximum shear stress

Last Answer : a. Resultant stress on any plane in a bi-axial stress system

Description : The angle between normal stress and tangential stress is known as angle of ______ a. declination b. orientation c. obliquity d. rotation

Last Answer : c. obliquity

Description : On the planes of maximum shear, there are (a) Normal stresses (b) Bending stresses (c) Bucking stresses (d) None

Last Answer : (a) Normal stresses

Description : How many angles of obliquity are there for a cuboidal body under complex stresses? a. 6 b. 8 c. 4 d. None

Last Answer : a. 6

Description : Principal planes are those planes on which a. Normal stress is maximum b. Normal stress is minimum c. Normal stress is either maximum or minimum d. Shear stress is maximum

Last Answer : c. Normal stress is either maximum or minimum

Description : In a general two dimensional stress system, planes of maximum shear stress are inclined at ___ with principal planes. a. 90 degree b. 180 degree c. 45 degree d. 60 degree

Last Answer : c. 45 degree

Description : Does a plane of maximum shear stress contain a? (a) Normal stress (b) Bending stress (c) Torsional shear stress (d) None

Last Answer : (a) Normal stress

Description : A principal plane is a plane of (a) Only normal stress (b) Only shear stress (c) Only bending stress (d) None

Last Answer : (a) Only normal stress

Description : Principal stress is the magnitude of ________ stress acting on the principal plane. a. Normal stress b. Shear stress c. Both a. and b. d. None of the above

Last Answer : a. Normal stress

Description : Maximum shear stress in terms of principal stresses is a. Firstly (σ 1 +σ 2 )/2 b. Secondly (σ 1 /σ 2 ) c. Thirdly (σ 1 –σ 2 )/2 d. None

Last Answer : c. Thirdly (σ 1 –σ 2 )/2

Description : In a body under pure shear, the magnitude and nature of the two principal stresses are a. Firstly Equals shear stress, opposite nature b. Secondly Equals shear stress, same nature c. Both (a) & (b) d. None

Last Answer : a. Firstly Equals shear stress, opposite nature

Description : Maximum shear stress is (a) Average sum of principal stresses (b) Average difference of principal stresses (c) Average sum as well as difference of principal stresses (d) None

Last Answer : (b) Average difference of principal stresses

Description : All the maximum shear stresses are at an angle of (a)45 0 (b) 90 0 (c) 135 0 (d) None

Last Answer : (b) 90 0

Description : In a general two dimensional stress system, there are a. Two principal planes b. Only one plane c. Three principal planes d. No principal plane

Last Answer : a. Two principal planes

Description : 0 Pick up the correct statement from the following: (A) The point through which the resultant of the shear stresses passes is known as shear centre (B) In the standard rolled channels, the shear centre ... horizontal plane and away from the C.G., outside of the leg projection (D) All the above

Last Answer : (D) All the above

Description : Stress concentration is defined as the localization of high stresses due to irregularities present in the component and no changes of the cross section. a) True b) False

Last Answer : b) False

Description : Principal stresses are a. Firstly Maximum and minimum shear stresses b. Secondly Maximum and minimum normal stresses c. Both (a) & (b) d. None

Last Answer : b. Secondly Maximum and minimum normal stresses

Description : Parallel fillet weld and transverse fillet weld both have the plane in which maximum shear stress occurs at 45’ to the leg dimension. a) True b) False

Last Answer : b) False

Description : A force 2P is acting on the double transverse fillet weld. Leg of weld is h and length l. Determine the shear stress in a plane inclined at θ with horizontal. a) PSinθ(Sinθ+Cosθ)/hl b) P(Sinθ+Cosθ)/hl c) Pcosθ(Sinθ+Cosθ)/hl d) None of the listed

Last Answer : a) PSinθ(Sinθ+Cosθ)/hl

Description : A force 2P is acting on the double transverse fillet weld. Leg of weld is h and length l. Determine the shear stress in a plane inclined at θ with horizontal. a) PSinθ(Sinθ+Cosθ)/hl b) P(Sinθ+Cosθ)/hl c) Pcosθ(Sinθ+Cosθ)/hl d) None of the listed

Last Answer : a) PSinθ(Sinθ+Cosθ)/hl

Description : A principal plane is a plane of (a) Zero tensile stress (b) Zero compressive stress (c) Zero shear stress (d) None

Last Answer : (c) Zero shear stress

Description : Minor principal stress has minimum ________ a. value of shear stress acting on the plane b. intensity of direct stress c. both a. and b. d. none of the above

Last Answer : b. intensity of direct stress

Description : What is the value of shear stress acting on a plane of circular bar which is subjected to axial tensile load of 100 kN? (Diamet a. 58.73 Mpa b. 40.23 Mpa c. 39.60 Mpa d. Insufficient data

Last Answer : c. 39.60 Mpa

Description : The angle between a principal plane and a plane of maximum shear is a. 15 0 b. 45 0 c. 75 0 d. None

Last Answer : b. 45 0

Description : The angle between a principal plane and a plane of maximum shear is a. 30 0 b. 60 0 c. 90 0 d. None

Last Answer : d. None

Description : In the triaxial compression test, the application of additional axial stress (i.e. deviator stress) on the soil specimen produces shear stress on (A) Horizontal plane only (B) Vertical plane only (C) Both horizontal and vertical planes (D) All planes except horizontal and vertical planes

Last Answer : (D) All planes except horizontal and vertical planes

Description : The shear plane in case of bolts should (a) be across threaded portion of shank (b) be parallel to axis of bolt (c) be normal to threaded portion of shank (d) never be across the threaded portion (e) none of the above.

Last Answer : (d) never be across the threaded portion

Description : Torsional shear stresses are induced in the spring wire when (A) spring is under compression (B) spring is under tension (C) both (A) and (B) (D) none of the above

Last Answer : (C) both (A) and (B)

Description : The helical spring ad wire of helical torsion spring, both are subjected to torsional shear stresses. a) True b) False

Last Answer : b) False

Description : Transverse fillet welds are under (i) Bending and shear stresses (ii)Compressive and torsion shear stresses (iii)Tensile and compressive stresses (iv)None

Last Answer : (iv)None

Description : Parallel fillet welds are under  Shear and bending stresses  Compressive and torsion shear stresses  Tensile and compressive stresses  None

Last Answer :  None

Description : Shear strain energy under principal tensile stresses σ1 and σ2 is (a) (1/12E) (σ1 — σ2) 2 + σ2 2 — σ1 2 ) (b) (1/12G) (σ1 — σ2) 2 + σ2 2 + σ1 2 ) (c) (1/12K) (σ1 — σ2) 2 + σ2 2 + σ1 2 ) (d) None

Last Answer : (b) (1/12G) (σ1 — σ2) 2 + σ2 2 + σ1 2 )

Description : In the analysis, all the principal stresses are assumed as a. Shear stresses b. Compressive stresses c. Tensile stresses d. None

Last Answer : c. Tensile stresses

Description : How many maximum shear stresses are there with three principal stresses? a. 1 b. 2 c. 3 d. None

Last Answer : c. 3

Description : Nature of the three principal stresses is a. Firstly All tensile b. Secondly All compressive c. Thirdly All shear d. None

Last Answer : a. Firstly All tensile

Description : Total number of maximum shear stresses is (a) One (b) Three (c) Five (d) None

Last Answer : (b) Three

Description : A shaft is subjected to the...... A. Normal stress B. Bending stress C. Shear stress D. Combine stress E. All types

Last Answer : E. All types

Description : The normal stress is perpendicular to the area under considerations, while the shear stress acts over the area. a) True b) False

Last Answer : a) True

Description : A principal stress is a a. Shear stress with zero normal stress b. Normal stress with zero shear stress c. Both (a) & (b) d. None

Last Answer : b. Normal stress with zero shear stress

Description : Through a point in a loaded soil mass, there exists typical planes mutually orthogonal on which the stress is wholly normal and no shear stress acts, if is (A) 1 (B) 2 (C) 3 (D) 4

Last Answer : Answer: Option C

Description : When comes down to stress reduction, which one is preferred? a) Solid flywheel b) Split flywheel c) Both have equal stresses d) Cannot be determined

Last Answer : b) Split flywheel

Description : What will happen if stresses induced due to surge in the spring exceeds the endurance limit stress of the spring. a) Fatigue Failure b) Fracture c) None of the listed d) Nipping

Last Answer : a) Fatigue Failure

Description : If the mean stress value for a sinusoidal stress function is zero, then this type of stress falls in which category? a) Fluctuating Stresses b) Alternating Stresses c) Repeated Stresses d) Reversed Stresses

Last Answer : d) Reversed Stresses

Description : The stress represented by cos (t) belongs to which category? a) Fluctuating Stresses b) Alternating Stresses c) Repeated Stresses d) Reversed Stresses

Last Answer : d) Reversed Stresses

Description : The stress represented by sin (t) + 4 belongs to which category? a) Alternating Stresses b) None of the mentioned c) Repeated Stresses d) Reversed Stresses

Last Answer : a) Alternating Stresses

Description : The stress represented by sin (t) + 2 belongs to which category? a) Fluctuating Stresses b) None of the mentioned c) Repeated Stresses d) Reversed Stresses

Last Answer : a) Fluctuating Stresses

Description : The stress represented by sin (t) + 1 belongs to which category? a) Fluctuating Stresses b) Alternating stresses c) Repeated Stresses d) Reversed Stresses

Last Answer : c) Repeated Stresses

Description : Why do we determine principal stresses? a. Failure is due to simple stress or strain b. Failure is due to complex stress or strain c. Both (a) & (b) d. None

Last Answer : a. Failure is due to simple stress or strain

Description : Which of the following stresses can be determined using Mohr's circle method? a. Torsional stress b. Bending stress c. Principal stress d. All of the above

Last Answer : c. Principal stress