In a general two dimensional stress system, planes of maximum shear stress are inclined at ___ with principal

planes.

a. 90 degree

b. 180 degree

c. 45 degree

d. 60 degree

1 Answer

Answer :

c. 45 degree

Related questions

Description : Principal planes are mutually inclined at a. 45 degree b. 60 degree c. 90 degree d. 180 degree

Last Answer : c. 90 degree

Description : Ellipse of stress is used to find a. Resultant stress on any plane in a bi-axial stress system b. Resultant stress on any plane in a general two dimensional system c. Maximum shear stress d. Location of planes of maximum shear stress

Last Answer : a. Resultant stress on any plane in a bi-axial stress system

Description : In a general two dimensional stress system, there are a. Two principal planes b. Only one plane c. Three principal planes d. No principal plane

Last Answer : a. Two principal planes

Description : Principal planes are those planes on which a. Normal stress is maximum b. Normal stress is minimum c. Normal stress is either maximum or minimum d. Shear stress is maximum

Last Answer : c. Normal stress is either maximum or minimum

Description : The angle between a principal plane and a plane of maximum shear is a. 30 0 b. 60 0 c. 90 0 d. None

Last Answer : d. None

Description : The angle between a principal plane and a plane of maximum shear is a. 15 0 b. 45 0 c. 75 0 d. None

Last Answer : b. 45 0

Description : A transmission shaft subjected to pure bending moment should be designed on the basis of (A) Maximum principal stress theory (B) Maximum shear stress theory (C) Distortion energy theory (D) Goodman or Soderberg diagrams

Last Answer : (A) Maximum principal stress theory

Description : For a homogeneous & isotropic body under hydrostatic pressure, which theory of elastic failure does not fail (a) Firstly Maximum Principal Theory (b) Secondly Maximum Shear Stress Theory (c) Thirdly Maximum Principal Energy Theory (d) None

Last Answer : (a) Firstly Maximum Principal Theory

Description : Under complex loading, if elastic limit reaches in tension, then failure occurs due to (a) Firstly Maximum principal strain theory (b) Secondly Maximum principal theory of strain energy (c) Thirdly Maximum shear stress theory (d) None

Last Answer : (d) None

Description : Under maximum principal stress theory, maximum principal stress is equal to (a) Allowable stress in tension (b) Allowable stress in compression (c) Allowable stress in shear (d) None

Last Answer : (a) Allowable stress in tension

Description : Maximum shear stress in terms of principal stresses is a. Firstly (σ 1 +σ 2 )/2 b. Secondly (σ 1 /σ 2 ) c. Thirdly (σ 1 –σ 2 )/2 d. None

Last Answer : c. Thirdly (σ 1 –σ 2 )/2

Description : Maximum shear stress is (a) Average sum of principal stresses (b) Average difference of principal stresses (c) Average sum as well as difference of principal stresses (d) None

Last Answer : (b) Average difference of principal stresses

Description : Angle of obliquity is defined as a. Angle between the plane on which stresses are evaluated and one of the given planes b. Angle between resultant stress and the plane of given normal stress c. Angle between resultant stress and shear stress d. Angle between resultant stress and normal stress

Last Answer : d. Angle between resultant stress and normal stress

Description : All the maximum shear stresses are at an angle of (a)45 0 (b) 90 0 (c) 135 0 (d) None

Last Answer : (b) 90 0

Description : A force 2P is acting on the double transverse fillet weld. Leg of weld is h and length l. Determine the shear stress in a plane inclined at θ with horizontal. a) PSinθ(Sinθ+Cosθ)/hl b) P(Sinθ+Cosθ)/hl c) Pcosθ(Sinθ+Cosθ)/hl d) None of the listed

Last Answer : a) PSinθ(Sinθ+Cosθ)/hl

Description : A force 2P is acting on the double transverse fillet weld. Leg of weld is h and length l. Determine the shear stress in a plane inclined at θ with horizontal. a) PSinθ(Sinθ+Cosθ)/hl b) P(Sinθ+Cosθ)/hl c) Pcosθ(Sinθ+Cosθ)/hl d) None of the listed

Last Answer : a) PSinθ(Sinθ+Cosθ)/hl

Description : Complementary shear stress is a. Parallel to applied stress b. Perpendicular to the applied shear stress c. Inclined to the applied shear stress d. None

Last Answer : b. Perpendicular to the applied shear stress

Description : Parallel fillet weld and transverse fillet weld both have the plane in which maximum shear stress occurs at 45’ to the leg dimension. a) True b) False

Last Answer : b) False

Description : Maximum allowable spacing of shear reinforcement for inclined stirrups with an inclination of 45° is restricted to [ A ] 0.75 d [ B ] 0.45 d [ C ] 0.90 d [ D ] d

Last Answer : [ D ] d

Description : The maximum tangential stress σ t = (σ x sin 2θ)/2 is maximum if, θ is equal to ________ a. 45 o b. 90 o c. 270 o d. all of the above

Last Answer : a. 45 o

Description : On the planes of maximum shear, there are (a) Normal stresses (b) Bending stresses (c) Bucking stresses (d) None

Last Answer : (a) Normal stresses

Description : All the principal strains are at an angle of (a) 45 0 (b) 90 0 (c) 135 0 (d) None

Last Answer : (b) 90 0

Description : All the principal stresses are at an angle of (a)90 0 (b) 45 0 (c) 135 0 (d) None

Last Answer : (a)90 0

Description : In a body under pure shear, the magnitude and nature of the two principal stresses are a. Firstly Equals shear stress, opposite nature b. Secondly Equals shear stress, same nature c. Both (a) & (b) d. None

Last Answer : a. Firstly Equals shear stress, opposite nature

Description : A principal stress is a. Tensile or shear stress b. Compressive or shear stress c. Tensile or compressive stress d. None

Last Answer : c. Tensile or compressive stress

Description : A principal stress is a a. Shear stress with zero normal stress b. Normal stress with zero shear stress c. Both (a) & (b) d. None

Last Answer : b. Normal stress with zero shear stress

Description : Identify the principal stress (a) Shear stress (b) Bending stress (c) Compressive stress (d) None

Last Answer : (c) Compressive stress

Description : A principal plane is a plane of (a) Only normal stress (b) Only shear stress (c) Only bending stress (d) None

Last Answer : (a) Only normal stress

Description : A principal plane is a plane of (a) Zero tensile stress (b) Zero compressive stress (c) Zero shear stress (d) None

Last Answer : (c) Zero shear stress

Description : Minor principal stress has minimum ________ a. value of shear stress acting on the plane b. intensity of direct stress c. both a. and b. d. none of the above

Last Answer : b. intensity of direct stress

Description : Principal stress is the magnitude of ________ stress acting on the principal plane. a. Normal stress b. Shear stress c. Both a. and b. d. None of the above

Last Answer : a. Normal stress

Description : Involute splines have stub teeth with a pressure angle of ___ a) 30 b) 45 c) 60 d) Can’t be determined

Last Answer : b) 45

Description : Involute splines have stub teeth with a pressure angle of ___ a) 30 b) 45 c) 60 d) Can’t be determined

Last Answer : b) 45

Description : All the principal stresses are at an angle of (a) 45 0 (b) 60 0 (c) 75 0 (d) None

Last Answer : (d) None

Description : There are in all (a) Two principal planes (b) Three principal planes (c) Four principal planes (d) None

Last Answer : (b) Three principal planes

Description : How many maximum shear stresses are there with three principal stresses? a. 1 b. 2 c. 3 d. None

Last Answer : c. 3

Description : Principal stresses are a. Firstly Maximum and minimum shear stresses b. Secondly Maximum and minimum normal stresses c. Both (a) & (b) d. None

Last Answer : b. Secondly Maximum and minimum normal stresses

Description : What is the value of shear stress acting on a plane of circular bar which is subjected to axial tensile load of 100 kN? (Diamet a. 58.73 Mpa b. 40.23 Mpa c. 39.60 Mpa d. Insufficient data

Last Answer : c. 39.60 Mpa

Description : Under complex loading, if elastic limit reaches in tension, then failure occurs due to (a) Firstly Maximum principal strain theory (b) Secondly Maximum principal theory of strain energy (c) Thirdly Maximum Principal stress theory (d) None

Last Answer : (c) Thirdly Maximum Principal stress theory

Description : Maximum principal stress is equal to (a) (σx + σy)/2 + [ (σx –σy) 2 + τ 2 ] 0.5 (b) (σx + σy)/2 + 0.5 [ (σx –σy) 2 + τ 2 ] 0.5 (c) (σx + σy)/2 + 0.5 [ (σx –σy) 2 + 4τ 2 ] 0.5 (d) None

Last Answer : (c) (σx + σy)/2 + 0.5 [ (σx –σy) 2 + 4τ 2 ] 0.5

Description : Maximum principal theory is also known as (a) Beltrami Theory (b) Maximum normal stress theory (c) Saint Venant’s theory (d) None

Last Answer : (b) Maximum normal stress theory

Description : Maximum principal stress theory is applicable to (a) Ductile materials (b) Brittle materials (c) Composite materials (d) None

Last Answer : (b) Brittle materials

Description : Maximum Principal Stress Theory is not good for brittle materials. a) True b) False

Last Answer : b) False

Description : If compressive yield stress and tensile yield stress are equivalent, then region of safety from maximum principal stress theory is of which shape? a) Rectangle b) Square c) Circle d) Ellipse

Last Answer : b) Square

Description : The magnitude of maximum principal stress is a. Firstly (σ x +σ y )/2+ (1/2)( σ x +σ y ) +4τ 2 ) 5 b. Secondly (σ x +σ y )/2+ (1/2)( σ x -σ y ) 2 +4τ 2 ) 5 c. Thirdly (σ x +σ y )/2+ (1/2)( σ x +σ y ) 2 +4τ 2 ) 5 d. None

Last Answer : b. Secondly (σ x +σ y )/2+ (1/2)( σ x -σ y ) 2 +4τ 2 ) 5

Description : Which is the maximum principal stress? a. Firstly σ 2 b. Secondly σ 3 c. Thirdly σ 1 d. None

Last Answer : c. Thirdly σ 1

Description : The maximum shear stress in spring wire is induced at (A) Inner surface of the coil (B) Outer surface of the coil (C) Central surface of the coil (D) End coils

Last Answer : (A) Inner surface of the coil

Description : Among maximum shear stress theory and distortion energy theory, which gives the higher value shear yield strength? a) Maximum shear stress theory b) Distortion energy theory c) Both give equal values d) Vary from material to material

Last Answer : b) Distortion energy theory

Description : Maximum shear stress in transverse fillet weld of leg h and length l is a) P/hl b) 1.21P/hl c) P/1.21hl d) None of the listed

Last Answer : b) 1.21P/hl

Description : According to the ASME code, maximum allowable shear stress is taken as X% of yield strength or Y% of ultimate strength. a) X=30 Y=18 b) X=30 Y=30 c) X=18 Y=18 d) X=18 Y=30

Last Answer : a) X=30 Y=18