In a general two dimensional stress system, there are

a. Two principal planes

b. Only one plane

c. Three principal planes

d. No principal plane

1 Answer

Answer :

a. Two principal planes

Related questions

Description : In a general two dimensional stress system, planes of maximum shear stress are inclined at ___ with principal planes. a. 90 degree b. 180 degree c. 45 degree d. 60 degree

Last Answer : c. 45 degree

Description : Ellipse of stress is used to find a. Resultant stress on any plane in a bi-axial stress system b. Resultant stress on any plane in a general two dimensional system c. Maximum shear stress d. Location of planes of maximum shear stress

Last Answer : a. Resultant stress on any plane in a bi-axial stress system

Description : Principal planes are those planes on which a. Normal stress is maximum b. Normal stress is minimum c. Normal stress is either maximum or minimum d. Shear stress is maximum

Last Answer : c. Normal stress is either maximum or minimum

Description : Angle of obliquity is defined as a. Angle between the plane on which stresses are evaluated and one of the given planes b. Angle between resultant stress and the plane of given normal stress c. Angle between resultant stress and shear stress d. Angle between resultant stress and normal stress

Last Answer : d. Angle between resultant stress and normal stress

Description : A principal plane is a plane of (a) Only normal stress (b) Only shear stress (c) Only bending stress (d) None

Last Answer : (a) Only normal stress

Description : There are in all (a) Two principal planes (b) Three principal planes (c) Four principal planes (d) None

Last Answer : (b) Three principal planes

Description : A principal plane is a plane of (a) Zero tensile stress (b) Zero compressive stress (c) Zero shear stress (d) None

Last Answer : (c) Zero shear stress

Description : Minor principal stress has minimum ________ a. value of shear stress acting on the plane b. intensity of direct stress c. both a. and b. d. none of the above

Last Answer : b. intensity of direct stress

Description : Principal stress is the magnitude of ________ stress acting on the principal plane. a. Normal stress b. Shear stress c. Both a. and b. d. None of the above

Last Answer : a. Normal stress

Description : Principal planes are mutually inclined at a. 45 degree b. 60 degree c. 90 degree d. 180 degree

Last Answer : c. 90 degree

Description : Two dimensional flows occurs when (A) The direction and magnitude of the velocity at all points are identical (B) The velocity of successive fluid particles, at any point, is the same at ... fluid particles move in plane or parallel planes and the streamline patterns are identical in each plan

Last Answer : Answer: Option D

Description : True one-dimensional flow occurs when (A) The direction and magnitude of the velocity at all points are identical (B) The velocity of successive fluid particles, at any point, is the same ... fluid particles move in plane or parallel planes and the streamline patterns are identical in each plane

Last Answer : Answer: Option A

Description : The angle between a principal plane and a plane of maximum shear is a. 15 0 b. 45 0 c. 75 0 d. None

Last Answer : b. 45 0

Description : The angle between a principal plane and a plane of maximum shear is a. 30 0 b. 60 0 c. 90 0 d. None

Last Answer : d. None

Description : In a body under pure shear, the magnitude and nature of the two principal stresses are a. Firstly Equals shear stress, opposite nature b. Secondly Equals shear stress, same nature c. Both (a) & (b) d. None

Last Answer : a. Firstly Equals shear stress, opposite nature

Description : A transmission shaft subjected to pure bending moment should be designed on the basis of (A) Maximum principal stress theory (B) Maximum shear stress theory (C) Distortion energy theory (D) Goodman or Soderberg diagrams

Last Answer : (A) Maximum principal stress theory

Description : For a homogeneous & isotropic body under hydrostatic pressure, which theory of elastic failure does not fail (a) Firstly Maximum Principal Theory (b) Secondly Maximum Shear Stress Theory (c) Thirdly Maximum Principal Energy Theory (d) None

Last Answer : (a) Firstly Maximum Principal Theory

Description : Under complex loading, if elastic limit reaches in tension, then failure occurs due to (a) Firstly Maximum principal strain theory (b) Secondly Maximum principal theory of strain energy (c) Thirdly Maximum Principal stress theory (d) None

Last Answer : (c) Thirdly Maximum Principal stress theory

Description : Under complex loading, if elastic limit reaches in tension, then failure occurs due to (a) Firstly Maximum principal strain theory (b) Secondly Maximum principal theory of strain energy (c) Thirdly Maximum shear stress theory (d) None

Last Answer : (d) None

Description : Maximum principal stress is equal to (a) (σx + σy)/2 + [ (σx –σy) 2 + τ 2 ] 0.5 (b) (σx + σy)/2 + 0.5 [ (σx –σy) 2 + τ 2 ] 0.5 (c) (σx + σy)/2 + 0.5 [ (σx –σy) 2 + 4τ 2 ] 0.5 (d) None

Last Answer : (c) (σx + σy)/2 + 0.5 [ (σx –σy) 2 + 4τ 2 ] 0.5

Description : Maximum principal theory is also known as (a) Beltrami Theory (b) Maximum normal stress theory (c) Saint Venant’s theory (d) None

Last Answer : (b) Maximum normal stress theory

Description : Under maximum principal stress theory, maximum principal stress is equal to (a) Allowable stress in tension (b) Allowable stress in compression (c) Allowable stress in shear (d) None

Last Answer : (a) Allowable stress in tension

Description : Maximum principal stress theory is applicable to (a) Ductile materials (b) Brittle materials (c) Composite materials (d) None

Last Answer : (b) Brittle materials

Description : Maximum Principal Stress Theory is not good for brittle materials. a) True b) False

Last Answer : b) False

Description : If compressive yield stress and tensile yield stress are equivalent, then region of safety from maximum principal stress theory is of which shape? a) Rectangle b) Square c) Circle d) Ellipse

Last Answer : b) Square

Description : Why do we determine principal stresses? a. Failure is due to simple stress or strain b. Failure is due to complex stress or strain c. Both (a) & (b) d. None

Last Answer : a. Failure is due to simple stress or strain

Description : The principal stress ha a a. Variable b. Constant c. Constant & variable d. None

Last Answer : b. Constant

Description : Is principal a? a. Simple stress b. Complex stress c. Bending stress d. None

Last Answer : a. Simple stress

Description : A principal stress is a. Tensile or shear stress b. Compressive or shear stress c. Tensile or compressive stress d. None

Last Answer : c. Tensile or compressive stress

Description : The principal strain due to σ1(tensile) and σ2 (Compressive ) stress is (a) Firstly (b)Secondly (c)Thirdly (d) None

Last Answer : (b)Secondly

Description : Maximum shear stress in terms of principal stresses is a. Firstly (σ 1 +σ 2 )/2 b. Secondly (σ 1 /σ 2 ) c. Thirdly (σ 1 –σ 2 )/2 d. None

Last Answer : c. Thirdly (σ 1 –σ 2 )/2

Description : The magnitude of maximum principal stress is a. Firstly (σ x +σ y )/2+ (1/2)( σ x +σ y ) +4τ 2 ) 5 b. Secondly (σ x +σ y )/2+ (1/2)( σ x -σ y ) 2 +4τ 2 ) 5 c. Thirdly (σ x +σ y )/2+ (1/2)( σ x +σ y ) 2 +4τ 2 ) 5 d. None

Last Answer : b. Secondly (σ x +σ y )/2+ (1/2)( σ x -σ y ) 2 +4τ 2 ) 5

Description : Which is the maximum principal stress? a. Firstly σ 2 b. Secondly σ 3 c. Thirdly σ 1 d. None

Last Answer : c. Thirdly σ 1

Description : A principal stress is a a. Shear stress with zero normal stress b. Normal stress with zero shear stress c. Both (a) & (b) d. None

Last Answer : b. Normal stress with zero shear stress

Description : Maximum shear stress is (a) Average sum of principal stresses (b) Average difference of principal stresses (c) Average sum as well as difference of principal stresses (d) None

Last Answer : (b) Average difference of principal stresses

Description : Identify the principal stress (a) Shear stress (b) Bending stress (c) Compressive stress (d) None

Last Answer : (c) Compressive stress

Description : Which of the following stresses can be determined using Mohr's circle method? a. Torsional stress b. Bending stress c. Principal stress d. All of the above

Last Answer : c. Principal stress

Description : In the triaxial compression test, the application of additional axial stress (i.e. deviator stress) on the soil specimen produces shear stress on (A) Horizontal plane only (B) Vertical plane only (C) Both horizontal and vertical planes (D) All planes except horizontal and vertical planes

Last Answer : (D) All planes except horizontal and vertical planes

Description : Parallel fillet weld and transverse fillet weld both have the plane in which maximum shear stress occurs at 45’ to the leg dimension. a) True b) False

Last Answer : b) False

Description : A force 2P is acting on the double transverse fillet weld. Leg of weld is h and length l. Determine the shear stress in a plane inclined at θ with horizontal. a) PSinθ(Sinθ+Cosθ)/hl b) P(Sinθ+Cosθ)/hl c) Pcosθ(Sinθ+Cosθ)/hl d) None of the listed

Last Answer : a) PSinθ(Sinθ+Cosθ)/hl

Description : A force 2P is acting on the double transverse fillet weld. Leg of weld is h and length l. Determine the shear stress in a plane inclined at θ with horizontal. a) PSinθ(Sinθ+Cosθ)/hl b) P(Sinθ+Cosθ)/hl c) Pcosθ(Sinθ+Cosθ)/hl d) None of the listed

Last Answer : a) PSinθ(Sinθ+Cosθ)/hl

Description : Does a plane of maximum shear stress contain a? (a) Normal stress (b) Bending stress (c) Torsional shear stress (d) None

Last Answer : (a) Normal stress

Description : What is the value of shear stress acting on a plane of circular bar which is subjected to axial tensile load of 100 kN? (Diamet a. 58.73 Mpa b. 40.23 Mpa c. 39.60 Mpa d. Insufficient data

Last Answer : c. 39.60 Mpa

Description : On the planes of maximum shear, there are (a) Normal stresses (b) Bending stresses (c) Bucking stresses (d) None

Last Answer : (a) Normal stresses

Description : There are in all (a) Two principal strains (b) Three principal strains (c) Four principal strains (d) None

Last Answer : (b) Three principal strains

Description : There are in all (a) Two principal stresses (b) Three principal stresses (c) Four principal stresses (d) None

Last Answer : (b) Three principal stresses

Description : The total strain energy for a unit cube subjected to three principal stresses is given by? a) U= [(σέ) 1 + (σέ) 2+ (σέ) 3]/3 b) U= [(σ12+σ22+σ32)/2E] – (σ1σ2+σ2σ3+σ3σ1)2μ c) U= [(σέ) 1 + (σέ) 2+ (σέ) 3]/4 d) None of the mentioned

Last Answer : b) U= [(σ12+σ22+σ32)/2E] – (σ1σ2+σ2σ3+σ3σ1)2μ

Description : How many maximum shear stresses are there with three principal stresses? a. 1 b. 2 c. 3 d. None

Last Answer : c. 3

Description : Nature of the three principal stresses is a. Firstly All tensile b. Secondly All compressive c. Thirdly All shear d. None

Last Answer : a. Firstly All tensile

Description : The equations for principal stresses are valid only when (a)σ x and σ y are both tensile (b) σ x is compressive and σ y is tensile (c) σ x is tensile and σ y is compressive (d) None

Last Answer : (a)σ x and σ y are both tensile