A `100 V` voltmeter of internal resistance `20 k Omega` in series with a high resistance `R` is connected to a `110 V` line. The voltmeter reads `5 V`

1 Answer

Answer :

A `100 V` voltmeter of internal resistance `20 k Omega` in series with a high resistance `R` is ... B. `315kOmega` C. `420kOmega` D. `440kOmega`

Related questions

Description : In the circuit diagram shown in Fig. 4.53, a voltmeter reads 30 V when connected across `400 Omega` resistance. Calculate what the same voltmeter read

Last Answer : In the circuit diagram shown in Fig. 4.53, a voltmeter reads 30 V when connected across `400 ... when it is connected across `300 Omega` resistance.

Description : A voltmeter of resistance `998 Omega` is connected across a cell of emf 2 V and internal resistance `2 Omega`. Find the p.d. across the voltmeter, tha

Last Answer : A voltmeter of resistance `998 Omega` is connected across a cell of emf 2 V and internal resistance `2 Omega`. Find the ... B. `3.5 V` C. 5 V D. 6 V

Description : When a resistance of 100`Omega` is connected in series with a galvanometer of resistance R, then its range is V. To double its range, a resistance of

Last Answer : When a resistance of 100`Omega` is connected in series with a galvanometer of resistance R, then its range ... 800`Omega` C. 900`Omega` D. 100`Omega`

Description : A galvanometer has a coil of resistance `100 Omega` and gives a full-scale deflection for `30 mA` current. If it is to work as a voltmeter of `30 V` r

Last Answer : A galvanometer has a coil of resistance `100 Omega` and gives a full-scale deflection for `30 mA` current. ... Omega` C. `1000 Omega` D. `1800 Omega`

Description : 10 cells, each of internal resistance `0.5 Omega` and 1.2 V emf are connected (a) all in series and (b) all in paralle. Calculate the current sent in

Last Answer : 10 cells, each of internal resistance `0.5 Omega` and 1.2 V emf are connected (a) all in ... each case through a wire of resistance `0.8 Omega`.

Description : The emf of a battery is 4.0 V and its internal resistance is `1.5 Omega`. Its potential difference is measured by a voltmeter of resistance `1000 Omeg

Last Answer : The emf of a battery is 4.0 V and its internal resistance is `1.5 Omega`. Its potential ... percentage error in the reading of emf shown by voltmeter.

Description : Three identical, each of emf 2 V and internal resistance `0.2 Omega` are connected in series to an external resistor of `7.4 Omega`. Calculate the cur

Last Answer : Three identical, each of emf 2 V and internal resistance `0.2 Omega` are connected in series to ... 7.4 Omega`. Calculate the current in the circuit.

Description : The range of voltmeter is 10 V and its internal resistance is `50 Omega`. To convert it to voltmeter of range 15 V, how much resistance is to be added

Last Answer : The range of voltmeter is 10 V and its internal resistance is `50 Omega`. To convert it to ... in parallel D. Add `125 Omega` resistor in series

Description : An ammeter and a voltmeter of resistance `R` connected in seires to an electric cell of negligible internal resistance. Their readings are `A` and `V`

Last Answer : An ammeter and a voltmeter of resistance `R` connected in seires to an electric cell of negligible ... increase D. A will increase and V will decrease

Description : A wire of length 100 cm is connected to a cell of emf 2 V and negligible internal resistance. The resistance of the wire is `3 Omega`. The additional

Last Answer : A wire of length 100 cm is connected to a cell of emf 2 V and negligible internal resistance. The ... B. `47Omega` C. `57Omega` D. `35Omega`

Description : A 20 V battery of internal resistance `1 Omega` is connected to three coils of `12 Omega, 6 Omega` and `4 Omega` in parallel, a resistor of `5Omega` a

Last Answer : A 20 V battery of internal resistance `1 Omega` is connected to three coils of `12 ... and the terminal potential difference across each battery.

Description : A resistance of `1980Omega` is connected in series with a voltmeter, after which the scale division becomes 100 times larger. Find the resistance of v

Last Answer : A resistance of `1980Omega` is connected in series with a voltmeter, after which the scale division becomes ... . `20Omega` C. `30Omega` D. `40Omega`

Description : A potentiometer wire of length `100 cm` having a resistance of `10 Omega` is connected in series with a resistance `R` and a cell of emf `2V` of negli

Last Answer : A potentiometer wire of length `100 cm` having a resistance of `10 Omega` is connected in series with a ... Omega` C. `790 Omega` D. `840 Omega`

Description : AB is a potentiometer wire of length 100 cm and its resistance is `10Omega`. It is connected in series with a resistance R = 40 `Omega` and a battery

Last Answer : AB is a potentiometer wire of length 100 cm and its resistance is `10Omega`. It is connected in series with a ... `1.6V` C. `0.08V` D. `0.16V`

Description : Two cells connected in series have electromotive force of 1.5 V each. Their internal resistances are `0.5 Omega` and `0.25 Omega` respectively. This c

Last Answer : Two cells connected in series have electromotive force of 1.5 V each. Their internal ... potential differnce across the terminals of each cell.

Description : 4. A three-phase, four-wire system having \( 250 V \) line-to-neutral has the following loads connected between the respective lines and the neutral. Calculate the current in the neutral wire?\[Z_{R}=20 \angle 0^{\circ} ... Z_{Y}=20 \angle 35^{\circ} \Omega, Z_{B}=20 \angle-55^{\circ} \Omega\](10M)

Last Answer : 4. A three-phase, four-wire system having \( 250 V \) line-to-neutral has the following loads connected ... =20 \angle-55^{\circ} \Omega \] (10M)

Description : 4. A three-phase, four-wire system having \( 250 V \) line-to-neutral has the following loads connected between the respective lines and the neutral. Calculate the current in the neutral wire?\[Z_{R}=20 \angle 0^{\circ} ... Z_{Y}=20 \angle 35^{\circ} \Omega, Z_{B}=20 \angle-55^{\circ} \Omega\](10M)

Last Answer : 4. A three-phase, four-wire system having \( 250 V \) line-to-neutral has the following loads connected ... =20 \angle-55^{\circ} \Omega \] (10M)

Description : 4. A three-phase, four-wire system having \( 250 V \) line-to-neutral has the following loads connected between the respective lines and the neutral. Calculate the current in the neutral wire?\[Z_{R}=20 \angle 0^{\circ} ... Z_{Y}=20 \angle 35^{\circ} \Omega, Z_{B}=20 \angle-55^{\circ} \Omega\](10M)

Last Answer : 4. A three-phase, four-wire system having \( 250 V \) line-to-neutral has the following loads connected ... =20 \angle-55^{\circ} \Omega \] (10M)

Description : Three identical cells each of emf 2 V and unknown internal resistance are connected in parallel. This combination is connected to a `5 Omega` resistor

Last Answer : Three identical cells each of emf 2 V and unknown internal resistance are connected in parallel. ... what is the internal resistance of each cell ?

Description : A battery of emf 2 V and internal resistance `0.5 Omega` is connected across a resistance of `9.5 Omega`. How many electrons pass through a cross-sect

Last Answer : A battery of emf 2 V and internal resistance `0.5 Omega` is connected across a resistance of `9. ... a cross-section of the resistance in 1 second ?

Description : The potential differnce between the terminals of a battery of emf 6.0 V and internal resistance `1 Omega` drops to 5.8 V when connected across an exte

Last Answer : The potential differnce between the terminals of a battery of emf 6.0 V and internal resistance ... resistor . Find the resistance of the external res

Description : A resistance of `4 Omega` and a wire of length 5 meters and resistance `5 Omega` are joined in series and connected to a cell of e.m.f. `10 V` and int

Last Answer : A resistance of `4 Omega` and a wire of length 5 meters and resistance `5 Omega` are joined in series and connected ... `3.0V` C. `0.67V` D. `1.33V`

Description : Consider the diagram shown below. A Voltmeter of resistance `150 Omega` is connected across A and B. The potential drop across B and C measured by vol

Last Answer : Consider the diagram shown below. A Voltmeter of resistance `150 Omega` is connected across A and B. The potential ... 29 B. 27 V C. 31 V D. 30 V

Description : In the given circuit, the voltmeter records 5 V. The resistance of the voltmeter in `Omega` is

Last Answer : In the given circuit, the voltmeter records 5 V. The resistance of the voltmeter in `Omega` is A. 200 B. 100 C. 10 D. 50

Description : A galvanometer having internal resistance `10 Omega` required `0.01` A for a full scale deflection. To convert this galvanometer to a voltmeter of ful

Last Answer : A galvanometer having internal resistance `10 Omega` required `0.01` A for a full scale deflection. ... Omega` in series D. `12010 Omega` in parallel

Description : A galvanometer of resistance `50 Omega` is connected to a battery of 8 V along with a resistance of `3950 Omega` in series. A full scale deflection of

Last Answer : A galvanometer of resistance `50 Omega` is connected to a battery of 8 V along with a resistance of `3950 Omega ... `. A. 1950 B. 7900 C. 2000 D. 7950

Description : A galvanometer of resistance `50 Omega ` is connected to a battery of `3 V` along with resistance of `2950 Omega` in series. A full scale deflection o

Last Answer : A galvanometer of resistance `50 Omega ` is connected to a battery of `3 V` along with resistance of `2950 ... `Omega` C. 5550 `Omega` D. 6050 `Omega`

Description : Potentiometer wire of length `1 m` is connected in series with `490 Omega` resistance and `2 V` battery. If `0.2 mV/cm` is the potential gradient, the

Last Answer : Potentiometer wire of length `1 m` is connected in series with `490 Omega` resistance and `2 V` battery. If ... 7.9Omega` C. `5.9Omega` D. `6.9Omega`

Description : A voltmeter of range 2 V and resistance `300 Omega` cannot be converted into ammeter of range

Last Answer : A voltmeter of range 2 V and resistance `300 Omega` cannot be converted into ammeter of range A. `1 A` B. `1 mA` C. `100 mA` D. `10 mA`

Description : Two batteries A and B each of e.m.f. 2 V are connected in series to an external resistance R = 1 ohm . If the internal resistance of battery A is 1.9

Last Answer : Two batteries A and B each of e.m.f. 2 V are connected in series to an external resistance R = 1 ohm . If the ... V B. `3.8` V C. zero D. `4.8` V

Description : The equivalent resistance of two resistor connected in series is `6 Omega` and their equivalent resistance is `(4)/(3)Omega`. What are the values of r

Last Answer : The equivalent resistance of two resistor connected in series is `6 Omega` and their equivalent resistance is `(4 ... , 2 Omega` D. `6 Omega, 2 Omega`

Description : Two electric bulbs rated 50 W and 100 W are glowing at full powr, when used in parallel with a battery of emf 120 V and internal resistance 10 `Omega`

Last Answer : Two electric bulbs rated 50 W and 100 W are glowing at full powr, when used in parallel with a battery of emf 120 V ... power, is A. 6 B. 4 C. 2 D. 8

Description : You are calibrating a multimeter using internal batteries to supply power for resistance measurements. However, you are unable to adjust the pointer to 'zero' using the adjustment knob. Therefore, you should ... change scales to the R X 100 scale and adjust using the 'zero ohms' adjusting knob

Last Answer : Answer: A

Description : A filament bulb `(500 W, 100 V)` is to be used in a `230 V` main supply. When a resistance `R` is connected in series, it works perfectly and the bulb

Last Answer : A filament bulb `(500 W, 100 V)` is to be used in a `230 V` main supply. When a resistance `R` is ... Omega` B. `46 Omega` C. `26Omega` D. `13 Omega`

Description : In the circuit shown the cells `A` and `B` have negligible resistance. For `V_(A) = 12 V, R_(1) = 500 Omega` and `R = 100 Omega`, the galvanometer `(G

Last Answer : In the circuit shown the cells `A` and `B` have negligible resistance. For `V_(A) = 12 V, R_(1) = 500 Omega` and ` ... A. 4 V B. 2 V C. 12 V D. 6 V

Description : A 150 V moving iron voltmeter of accuracy class 1.0 reads 75 V when used in a circuit under a standard conditions. The maximum possible percentage error in the reading is:

Last Answer : A 150 V moving iron voltmeter of accuracy class 1.0 reads 75 V when used in a circuit under a standard conditions. The maximum possible percentage error in the reading is:  2.0.

Description : Two cells of emf of 1.5 V and 2.0 V having internal resistances of `1 Omega` and `2 Omega`, respectively are connected in parallel so as to send curre

Last Answer : Two cells of emf of 1.5 V and 2.0 V having internal resistances of `1 Omega` and `2 Omega` ... of `5 Omega`. Find the current in the external circuit.

Description : In the circuit shown in Fig. 4.64, the battery has an emf of 12.0 V and an internal resistance of `5R//11`. If the ammeter reads 2.0 A, what is the va

Last Answer : In the circuit shown in Fig. 4.64, the battery has an emf of 12.0 V and an internal resistance of ` ... ammeter reads 2.0 A, what is the value of R ?

Description : `6Omega` and `12Omega` resistors are connected in parallel. This combination is connected in series with 10 V battery and `6 Omega` resistor. What is

Last Answer : `6Omega` and `12Omega` resistors are connected in parallel. This combination is connected in series with 10 V battery and ... 4 V B. 16 V C. 2 D. 8 V

Description : Two resistors of `6 Omega " and " 9 Omega` are connected in series to a 120 V source. The power consumed by the `6 Omega` resistor is

Last Answer : Two resistors of `6 Omega " and " 9 Omega` are connected in series to a 120 V source. The power consumed by ... 384 W B. 616 W C. 1500 W D. 1800 W

Description : A `5 Omega` resistor is connected in series with a parallel combination of n resistors of `6 Omega` each. The equivalent resistance is `7 Omega`. Find

Last Answer : A `5 Omega` resistor is connected in series with a parallel combination of n resistors of `6 Omega ... The equivalent resistance is `7 Omega`. Find n.

Description : Determine the voltage drop across the resistance `R_(1)` in the circuit given in Fig. 4.55 with `epsilon=90 V, R_(1)=5 k Omega, R_(2)=5k Omega, R_(3)=

Last Answer : Determine the voltage drop across the resistance `R_(1)` in the circuit given in Fig. 4.55 with `epsilon=90 V, ... k Omega " and " R_(4)=10 k Omega`.

Description : The reading of a voltmoter when a cell is connected to it is 2.2 V. When the terminals of the cell are connected to a resistance of `4 Omega`, the vol

Last Answer : The reading of a voltmoter when a cell is connected to it is 2.2 V. When the terminals of the ... to 2 V. Find the internal resistance of the cell.

Description : When 10 cells in series are connected to the ends of a resistance of `59 Omega`, the current is found to be 0.25 A, but when the same cells after bein

Last Answer : When 10 cells in series are connected to the ends of a resistance of `59 Omega`, the ... Calculate the internal resistance and emf of each cell.

Description : The resistance of two conductors in series is `18 Omega` and the resistance becomes `4 Omega` when connected in parallel. Find the resistance of indiv

Last Answer : The resistance of two conductors in series is `18 Omega` and the resistance becomes `4 ... in parallel. Find the resistance of individual conductors.

Description : A potentiometer wire has length `4 m` and resistance `8 Omega`. The resistance that must be connected in series with the wire and an accumulator of e.

Last Answer : A potentiometer wire has length `4 m` and resistance `8 Omega`. The resistance that must be connected in ... Omega` C. `44 Omega` D. `48 Omega`

Description : Six resistance each of value `r=5 Omega` are connected between points A, B and C as shown in figure. If `R_(1), R_(2)` and `R_(3)` are the net resista

Last Answer : Six resistance each of value `r=5 Omega` are connected between points A, B and C as shown in figure. If `R_(1), R_(2) ... 1:2:3` C. `5:4:3` D. `4:3:2`

Description : How would you arrange 64 similar cells each having an emf of 2.0 V and internal resistance `2 Omega` so as to send maximum current through an external

Last Answer : How would you arrange 64 similar cells each having an emf of 2.0 V and internal resistance ` ... current through an external resistance of `8 Omega`.

Description : The internal resistance of a `2.1 V` cell which gives a current `0.2 A` through a resistance of `10 Omega`

Last Answer : The internal resistance of a `2.1 V` cell which gives a current `0.2 A` through a resistance of `10 Omega` A ... Omega` C. `0.8 Omega` D. `1.0 Omega`

Description : A potential difference of 10 V is applied across a conductor of resistance `1 k Omega`. Find the number of electrons flowing through the conductor in

Last Answer : A potential difference of 10 V is applied across a conductor of resistance `1 k Omega`. ... of electrons flowing through the conductor in 5 minutes.