In the given circuit, the voltmeter records 5 V. The resistance of the voltmeter in `Omega` is

1 Answer

Answer :

In the given circuit, the voltmeter records 5 V. The resistance of the voltmeter in `Omega` is A. 200 B. 100 C. 10 D. 50

Related questions

Description : In the circuit diagram shown in Fig. 4.53, a voltmeter reads 30 V when connected across `400 Omega` resistance. Calculate what the same voltmeter read

Last Answer : In the circuit diagram shown in Fig. 4.53, a voltmeter reads 30 V when connected across `400 ... when it is connected across `300 Omega` resistance.

Description : The emf of a battery is 4.0 V and its internal resistance is `1.5 Omega`. Its potential difference is measured by a voltmeter of resistance `1000 Omeg

Last Answer : The emf of a battery is 4.0 V and its internal resistance is `1.5 Omega`. Its potential ... percentage error in the reading of emf shown by voltmeter.

Description : A `100 V` voltmeter of internal resistance `20 k Omega` in series with a high resistance `R` is connected to a `110 V` line. The voltmeter reads `5 V`

Last Answer : A `100 V` voltmeter of internal resistance `20 k Omega` in series with a high resistance `R` is ... B. `315kOmega` C. `420kOmega` D. `440kOmega`

Description : A voltmeter of range 2 V and resistance `300 Omega` cannot be converted into ammeter of range

Last Answer : A voltmeter of range 2 V and resistance `300 Omega` cannot be converted into ammeter of range A. `1 A` B. `1 mA` C. `100 mA` D. `10 mA`

Description : A galvanometer has a coil of resistance `100 Omega` and gives a full-scale deflection for `30 mA` current. If it is to work as a voltmeter of `30 V` r

Last Answer : A galvanometer has a coil of resistance `100 Omega` and gives a full-scale deflection for `30 mA` current. ... Omega` C. `1000 Omega` D. `1800 Omega`

Description : The range of voltmeter is 10 V and its internal resistance is `50 Omega`. To convert it to voltmeter of range 15 V, how much resistance is to be added

Last Answer : The range of voltmeter is 10 V and its internal resistance is `50 Omega`. To convert it to ... in parallel D. Add `125 Omega` resistor in series

Description : A voltmeter of resistance `998 Omega` is connected across a cell of emf 2 V and internal resistance `2 Omega`. Find the p.d. across the voltmeter, tha

Last Answer : A voltmeter of resistance `998 Omega` is connected across a cell of emf 2 V and internal resistance `2 Omega`. Find the ... B. `3.5 V` C. 5 V D. 6 V

Description : Determine the voltage drop across the resistance `R_(1)` in the circuit given in Fig. 4.55 with `epsilon=90 V, R_(1)=5 k Omega, R_(2)=5k Omega, R_(3)=

Last Answer : Determine the voltage drop across the resistance `R_(1)` in the circuit given in Fig. 4.55 with `epsilon=90 V, ... k Omega " and " R_(4)=10 k Omega`.

Description : A galvanometer having internal resistance `10 Omega` required `0.01` A for a full scale deflection. To convert this galvanometer to a voltmeter of ful

Last Answer : A galvanometer having internal resistance `10 Omega` required `0.01` A for a full scale deflection. ... Omega` in series D. `12010 Omega` in parallel

Description : Consider the diagram shown below. A Voltmeter of resistance `150 Omega` is connected across A and B. The potential drop across B and C measured by vol

Last Answer : Consider the diagram shown below. A Voltmeter of resistance `150 Omega` is connected across A and B. The potential ... 29 B. 27 V C. 31 V D. 30 V

Description : In the circuit shown the cells `A` and `B` have negligible resistance. For `V_(A) = 12 V, R_(1) = 500 Omega` and `R = 100 Omega`, the galvanometer `(G

Last Answer : In the circuit shown the cells `A` and `B` have negligible resistance. For `V_(A) = 12 V, R_(1) = 500 Omega` and ` ... A. 4 V B. 2 V C. 12 V D. 6 V

Description : In given figure, the potentiometer wire AB has a resistance of `5 Omega` and length 10 m . The balancing length AM for the emf of 0.4 V is

Last Answer : In given figure, the potentiometer wire AB has a resistance of `5 Omega` and length 10 m . The balancing length AM for ... B. 4 m C. `0.8` m D. 8 m

Description : In the given circuit diagram if each resistance is of `10 Omega`, then the current in arm AD will be

Last Answer : In the given circuit diagram if each resistance is of `10 Omega`, then the current in arm AD will be A. `(i)/(5)` ... )` C. `(3i)/(5)` D. `(4i)/(5)`

Description : Three identical cells each of emf 2 V and unknown internal resistance are connected in parallel. This combination is connected to a `5 Omega` resistor

Last Answer : Three identical cells each of emf 2 V and unknown internal resistance are connected in parallel. ... what is the internal resistance of each cell ?

Description : 10 cells, each of internal resistance `0.5 Omega` and 1.2 V emf are connected (a) all in series and (b) all in paralle. Calculate the current sent in

Last Answer : 10 cells, each of internal resistance `0.5 Omega` and 1.2 V emf are connected (a) all in ... each case through a wire of resistance `0.8 Omega`.

Description : A battery of emf 2 V and internal resistance `0.5 Omega` is connected across a resistance of `9.5 Omega`. How many electrons pass through a cross-sect

Last Answer : A battery of emf 2 V and internal resistance `0.5 Omega` is connected across a resistance of `9. ... a cross-section of the resistance in 1 second ?

Description : The potential differnce between the terminals of a battery of emf 6.0 V and internal resistance `1 Omega` drops to 5.8 V when connected across an exte

Last Answer : The potential differnce between the terminals of a battery of emf 6.0 V and internal resistance ... resistor . Find the resistance of the external res

Description : A resistance of `4 Omega` and a wire of length 5 meters and resistance `5 Omega` are joined in series and connected to a cell of e.m.f. `10 V` and int

Last Answer : A resistance of `4 Omega` and a wire of length 5 meters and resistance `5 Omega` are joined in series and connected ... `3.0V` C. `0.67V` D. `1.33V`

Description : How would you arrange 64 similar cells each having an emf of 2.0 V and internal resistance `2 Omega` so as to send maximum current through an external

Last Answer : How would you arrange 64 similar cells each having an emf of 2.0 V and internal resistance ` ... current through an external resistance of `8 Omega`.

Description : A 20 V battery of internal resistance `1 Omega` is connected to three coils of `12 Omega, 6 Omega` and `4 Omega` in parallel, a resistor of `5Omega` a

Last Answer : A 20 V battery of internal resistance `1 Omega` is connected to three coils of `12 ... and the terminal potential difference across each battery.

Description : Three identical, each of emf 2 V and internal resistance `0.2 Omega` are connected in series to an external resistor of `7.4 Omega`. Calculate the cur

Last Answer : Three identical, each of emf 2 V and internal resistance `0.2 Omega` are connected in series to ... 7.4 Omega`. Calculate the current in the circuit.

Description : The reading of a voltmoter when a cell is connected to it is 2.2 V. When the terminals of the cell are connected to a resistance of `4 Omega`, the vol

Last Answer : The reading of a voltmoter when a cell is connected to it is 2.2 V. When the terminals of the ... to 2 V. Find the internal resistance of the cell.

Description : A potential difference of 10 V is applied across a conductor of resistance `1 k Omega`. Find the number of electrons flowing through the conductor in

Last Answer : A potential difference of 10 V is applied across a conductor of resistance `1 k Omega`. ... of electrons flowing through the conductor in 5 minutes.

Description : The internal resistance of a `2.1 V` cell which gives a current `0.2 A` through a resistance of `10 Omega`

Last Answer : The internal resistance of a `2.1 V` cell which gives a current `0.2 A` through a resistance of `10 Omega` A ... Omega` C. `0.8 Omega` D. `1.0 Omega`

Description : Each resistor shown in the figure has a resistance of `10 Omega` and the battery has the emf 6 V. What will be the current supplied by the battery ?

Last Answer : Each resistor shown in the figure has a resistance of `10 Omega` and the battery has the emf 6 V. What will be the ... 2 A` C. `1.8 A` D. `0.3 A`

Description : A galvanometer of resistance `50 Omega` is connected to a battery of 8 V along with a resistance of `3950 Omega` in series. A full scale deflection of

Last Answer : A galvanometer of resistance `50 Omega` is connected to a battery of 8 V along with a resistance of `3950 Omega ... `. A. 1950 B. 7900 C. 2000 D. 7950

Description : Two electric bulbs rated 50 W and 100 W are glowing at full powr, when used in parallel with a battery of emf 120 V and internal resistance 10 `Omega`

Last Answer : Two electric bulbs rated 50 W and 100 W are glowing at full powr, when used in parallel with a battery of emf 120 V ... power, is A. 6 B. 4 C. 2 D. 8

Description : When a resistance of 100`Omega` is connected in series with a galvanometer of resistance R, then its range is V. To double its range, a resistance of

Last Answer : When a resistance of 100`Omega` is connected in series with a galvanometer of resistance R, then its range ... 800`Omega` C. 900`Omega` D. 100`Omega`

Description : A galvanometer of resistance `50 Omega ` is connected to a battery of `3 V` along with resistance of `2950 Omega` in series. A full scale deflection o

Last Answer : A galvanometer of resistance `50 Omega ` is connected to a battery of `3 V` along with resistance of `2950 ... `Omega` C. 5550 `Omega` D. 6050 `Omega`

Description : A wire of length 100 cm is connected to a cell of emf 2 V and negligible internal resistance. The resistance of the wire is `3 Omega`. The additional

Last Answer : A wire of length 100 cm is connected to a cell of emf 2 V and negligible internal resistance. The ... B. `47Omega` C. `57Omega` D. `35Omega`

Description : Potentiometer wire of length `1 m` is connected in series with `490 Omega` resistance and `2 V` battery. If `0.2 mV/cm` is the potential gradient, the

Last Answer : Potentiometer wire of length `1 m` is connected in series with `490 Omega` resistance and `2 V` battery. If ... 7.9Omega` C. `5.9Omega` D. `6.9Omega`

Description : In the circuit shown in Fig. 4.63, the terminal voltage of the battery is 6.0 V. Find the current I through the `18 Omega` resistor.

Last Answer : In the circuit shown in Fig. 4.63, the terminal voltage of the battery is 6.0 V. Find the current I through the `18 Omega` resistor.

Description : An ammeter and a voltmeter of resistance `R` connected in seires to an electric cell of negligible internal resistance. Their readings are `A` and `V`

Last Answer : An ammeter and a voltmeter of resistance `R` connected in seires to an electric cell of negligible ... increase D. A will increase and V will decrease

Description : A resistance of `1980Omega` is connected in series with a voltmeter, after which the scale division becomes 100 times larger. Find the resistance of v

Last Answer : A resistance of `1980Omega` is connected in series with a voltmeter, after which the scale division becomes ... . `20Omega` C. `30Omega` D. `40Omega`

Description : A 1mA D' Arsonval movement has resistance of 100 Ω. It is to be converted to a 10 V voltmeter. The value of multiplier resistance is  (A) 999 Ω (B) 9999 Ω (C) 9900 Ω (D) 990 Ω 

Last Answer : C) Rs = (10/1x10^-3) - 100 Rs = 9900

Description : In the circuit shown in figure ammeter and voltmeter are ideal. If `E=4 V,R=9Omega` and `r=1Omega` then readings of ammeter and voltmeter are

Last Answer : In the circuit shown in figure ammeter and voltmeter are ideal. If `E=4 V,R=9Omega` and `r=1Omega` then readings of ... V C. 3 A, 4 V D. 4 A, 4 V

Description : In the circuit shown in figure, the resistance R has a value that depends on the current. Specifically R is 20 `Omega` when `i` is zero and the amount

Last Answer : In the circuit shown in figure, the resistance R has a value that depends on the current. Specifically R is 20 `Omega` ... A B. `10A` C. 20 A D. `5A`

Description : An AC circuit consists of a resistance and a choke coil in series . The resistance is of 220 `Omega` and choke coils is of 0.7 H . The power abosorbed

Last Answer : An AC circuit consists of a resistance and a choke coil in series . The resistance is of 220 ` ... 50 Hz , source connected with the circuit , is

Description : By mistake, a voltmeter is connected in series and an ammeter is connected in parallel, with a resistance in an electrical circuit. What will happen t

Last Answer : By mistake, a voltmeter is connected in series and an ammeter is connected in parallel, with a ... be damaged D. Only the voltmeter will be damaged

Description : To limit the current flow through a DC voltmeter to as low a value as possible, the moving coil circuit is provided with a/an _____________. A. high series resistance B. high parallel resistance C. series inductor D. external shunt

Last Answer : Answer: A

Description : To test fuses in an energized circuit, you should use a ____________. A. low voltage light bulb B. megohmmeter C. voltmeter D. resistance meter

Last Answer : Answer: C

Description : A resistance in a circuit of unknown value is to be tested using the voltmeter/ammeter method. Therefore, the meters should be connected with _____________. A. both meters in series with the ... parallel with the resistance D. the ammeter in parallel and the voltmeter in series with the resistance

Last Answer : Answer: C

Description : When making voltage measurements in a high-resistance circuit, you should always use a voltmeter with what relative value of resistance?

Last Answer : . High.

Description : Find the minimum number of cells required to produce an electric current of 1.5 A through a resistance of `30 Omega`. Given that the emf of each cell

Last Answer : Find the minimum number of cells required to produce an electric current of 1.5 A through a resistance ... .5 V and internal resistance `1.0 Omega`.

Description : Given three resistances of `30 Omega` each. How can they be connected to given a total resistance of (i) `90 Omega (ii) 10 Omega (iii) 45 Omega` ?

Last Answer : Given three resistances of `30 Omega` each. How can they be connected to given a total resistance of (i) `90 Omega (ii) 10 Omega (iii) 45 Omega` ?

Description : Given that resistivity of copper is `1.68xx10^(-8) Omega`m. Calculate the amount of copper required to draw a wire 10 km long having resistance of `10

Last Answer : Given that resistivity of copper is `1.68xx10^(-8) Omega`m. Calculate the amount of copper required to draw a ... copper is `8.9xx10^(3) kg m^(-3)`.

Description : A galvanometer having resistance of `50 Omega` requires a current of `100 Omega A` to given full scale deflection. How much resistance is required to

Last Answer : A galvanometer having resistance of `50 Omega` requires a current of `100 Omega A` to given full scale ... in series D. `10^(5)Omega` in parallel

Description : Use Voltmeter, ammeter, wattmeter to determine active, reactive and apparent power consumed in given R—C series circuit, draw phasor diagram.

Last Answer : Use Voltmeter, ammeter, wattmeter to determine active, reactive and apparent power consumed in given R-C series circuit, draw phasor diagram. Practical Significance In the industry environment ... autotransformer position to zero and switch OFF the supply. 8. Draw the phasor diagram.

Description : Use Voltmeter, ammeter, wattmeter to determine active, reactive and apparent power consumed in given R-L series circuit, draw phasor diagram.

Last Answer : Practical Significance In the industry environment Electrical Engineering diploma graduate are expected to measure basic parameters like voltage, frequency, time period etc. for R-L series circuits. Therefore ... /varying L. 7. Draw the phasor diagram for each of reading for verification.

Description : Two cells connected in series have electromotive force of 1.5 V each. Their internal resistances are `0.5 Omega` and `0.25 Omega` respectively. This c

Last Answer : Two cells connected in series have electromotive force of 1.5 V each. Their internal ... potential differnce across the terminals of each cell.