A voltmeter of resistance `998 Omega` is connected across a cell of emf 2 V and internal resistance `2 Omega`. Find the p.d. across the voltmeter, tha

1 Answer

Answer :

A voltmeter of resistance `998 Omega` is connected across a cell of emf 2 V and internal resistance `2 Omega`. Find the ... B. `3.5 V` C. 5 V D. 6 V

Related questions

Description : A battery of emf 2 V and internal resistance `0.5 Omega` is connected across a resistance of `9.5 Omega`. How many electrons pass through a cross-sect

Last Answer : A battery of emf 2 V and internal resistance `0.5 Omega` is connected across a resistance of `9. ... a cross-section of the resistance in 1 second ?

Description : The potential differnce between the terminals of a battery of emf 6.0 V and internal resistance `1 Omega` drops to 5.8 V when connected across an exte

Last Answer : The potential differnce between the terminals of a battery of emf 6.0 V and internal resistance ... resistor . Find the resistance of the external res

Description : The emf of a battery is 4.0 V and its internal resistance is `1.5 Omega`. Its potential difference is measured by a voltmeter of resistance `1000 Omeg

Last Answer : The emf of a battery is 4.0 V and its internal resistance is `1.5 Omega`. Its potential ... percentage error in the reading of emf shown by voltmeter.

Description : A wire of length 100 cm is connected to a cell of emf 2 V and negligible internal resistance. The resistance of the wire is `3 Omega`. The additional

Last Answer : A wire of length 100 cm is connected to a cell of emf 2 V and negligible internal resistance. The ... B. `47Omega` C. `57Omega` D. `35Omega`

Description : In the circuit diagram shown in Fig. 4.53, a voltmeter reads 30 V when connected across `400 Omega` resistance. Calculate what the same voltmeter read

Last Answer : In the circuit diagram shown in Fig. 4.53, a voltmeter reads 30 V when connected across `400 ... when it is connected across `300 Omega` resistance.

Description : Three identical cells each of emf 2 V and unknown internal resistance are connected in parallel. This combination is connected to a `5 Omega` resistor

Last Answer : Three identical cells each of emf 2 V and unknown internal resistance are connected in parallel. ... what is the internal resistance of each cell ?

Description : Three identical, each of emf 2 V and internal resistance `0.2 Omega` are connected in series to an external resistor of `7.4 Omega`. Calculate the cur

Last Answer : Three identical, each of emf 2 V and internal resistance `0.2 Omega` are connected in series to ... 7.4 Omega`. Calculate the current in the circuit.

Description : 10 cells, each of internal resistance `0.5 Omega` and 1.2 V emf are connected (a) all in series and (b) all in paralle. Calculate the current sent in

Last Answer : 10 cells, each of internal resistance `0.5 Omega` and 1.2 V emf are connected (a) all in ... each case through a wire of resistance `0.8 Omega`.

Description : A `100 V` voltmeter of internal resistance `20 k Omega` in series with a high resistance `R` is connected to a `110 V` line. The voltmeter reads `5 V`

Last Answer : A `100 V` voltmeter of internal resistance `20 k Omega` in series with a high resistance `R` is ... B. `315kOmega` C. `420kOmega` D. `440kOmega`

Description : Two cells of emf of 1.5 V and 2.0 V having internal resistances of `1 Omega` and `2 Omega`, respectively are connected in parallel so as to send curre

Last Answer : Two cells of emf of 1.5 V and 2.0 V having internal resistances of `1 Omega` and `2 Omega` ... of `5 Omega`. Find the current in the external circuit.

Description : Consider the diagram shown below. A Voltmeter of resistance `150 Omega` is connected across A and B. The potential drop across B and C measured by vol

Last Answer : Consider the diagram shown below. A Voltmeter of resistance `150 Omega` is connected across A and B. The potential ... 29 B. 27 V C. 31 V D. 30 V

Description : How would you arrange 64 similar cells each having an emf of 2.0 V and internal resistance `2 Omega` so as to send maximum current through an external

Last Answer : How would you arrange 64 similar cells each having an emf of 2.0 V and internal resistance ` ... current through an external resistance of `8 Omega`.

Description : The range of voltmeter is 10 V and its internal resistance is `50 Omega`. To convert it to voltmeter of range 15 V, how much resistance is to be added

Last Answer : The range of voltmeter is 10 V and its internal resistance is `50 Omega`. To convert it to ... in parallel D. Add `125 Omega` resistor in series

Description : Two electric bulbs rated 50 W and 100 W are glowing at full powr, when used in parallel with a battery of emf 120 V and internal resistance 10 `Omega`

Last Answer : Two electric bulbs rated 50 W and 100 W are glowing at full powr, when used in parallel with a battery of emf 120 V ... power, is A. 6 B. 4 C. 2 D. 8

Description : An ammeter and a voltmeter of resistance `R` connected in seires to an electric cell of negligible internal resistance. Their readings are `A` and `V`

Last Answer : An ammeter and a voltmeter of resistance `R` connected in seires to an electric cell of negligible ... increase D. A will increase and V will decrease

Description : A potentiometer wire of length `100 cm` having a resistance of `10 Omega` is connected in series with a resistance `R` and a cell of emf `2V` of negli

Last Answer : A potentiometer wire of length `100 cm` having a resistance of `10 Omega` is connected in series with a ... Omega` C. `790 Omega` D. `840 Omega`

Description : Four cells, each of emf E and internal resistance r, are connected in series across an external resistance reverse. Then, the current in the external

Last Answer : Four cells, each of emf E and internal resistance r, are connected in series across an external resistance reverse. Then, ... (3r+R)` D. `(2E)/(3r+R)`

Description : A 20 V battery of internal resistance `1 Omega` is connected to three coils of `12 Omega, 6 Omega` and `4 Omega` in parallel, a resistor of `5Omega` a

Last Answer : A 20 V battery of internal resistance `1 Omega` is connected to three coils of `12 ... and the terminal potential difference across each battery.

Description : 24 cells of emf `1.5 V` each having internal resistance of 1 ohm are connected to an external resistance of `1.5` ohms. To get maximum current,

Last Answer : 24 cells of emf `1.5 V` each having internal resistance of 1 ohm are connected to an external ... in series and 4 such rows are connected in parallel

Description : A galvanometer having internal resistance `10 Omega` required `0.01` A for a full scale deflection. To convert this galvanometer to a voltmeter of ful

Last Answer : A galvanometer having internal resistance `10 Omega` required `0.01` A for a full scale deflection. ... Omega` in series D. `12010 Omega` in parallel

Description : A voltmeter of range 2 V and resistance `300 Omega` cannot be converted into ammeter of range

Last Answer : A voltmeter of range 2 V and resistance `300 Omega` cannot be converted into ammeter of range A. `1 A` B. `1 mA` C. `100 mA` D. `10 mA`

Description : A galvanometer has a coil of resistance `100 Omega` and gives a full-scale deflection for `30 mA` current. If it is to work as a voltmeter of `30 V` r

Last Answer : A galvanometer has a coil of resistance `100 Omega` and gives a full-scale deflection for `30 mA` current. ... Omega` C. `1000 Omega` D. `1800 Omega`

Description : Each resistor shown in the figure has a resistance of `10 Omega` and the battery has the emf 6 V. What will be the current supplied by the battery ?

Last Answer : Each resistor shown in the figure has a resistance of `10 Omega` and the battery has the emf 6 V. What will be the ... 2 A` C. `1.8 A` D. `0.3 A`

Description : In given figure, the potentiometer wire AB has a resistance of `5 Omega` and length 10 m . The balancing length AM for the emf of 0.4 V is

Last Answer : In given figure, the potentiometer wire AB has a resistance of `5 Omega` and length 10 m . The balancing length AM for ... B. 4 m C. `0.8` m D. 8 m

Description : In the given circuit, the voltmeter records 5 V. The resistance of the voltmeter in `Omega` is

Last Answer : In the given circuit, the voltmeter records 5 V. The resistance of the voltmeter in `Omega` is A. 200 B. 100 C. 10 D. 50

Description : If E is the emf of a cell of internal resistance r and external resistance R, then potential difference across R is given as

Last Answer : If E is the emf of a cell of internal resistance r and external resistance R, then potential difference across R is given ... /R)` D. `V=E//(1+R//r)`

Description : A cell which has an emf `1.5` V is connectedin series with an external resistance of `10Omega`. If the potential difference across the cell is `1.25`

Last Answer : A cell which has an emf `1.5` V is connectedin series with an external resistance of `10Omega`. If the potential ... `0.25` C. `1.5` D. `0.3`

Description : A cell of emf E and internal resistance r is connected in series with an external resistance nr. Than what will be the ratio of the terminal potential

Last Answer : A cell of emf E and internal resistance r is connected in series with an external resistance nr. Than what will be the ... /(n + 1)` D. `(n + 1)/n`

Description : Four identical cells of emf `epsilon` and internal resistance r are to be connected in series. Suppose, if one of the cell is connected wrongly, then

Last Answer : Four identical cells of emf `epsilon` and internal resistance r are to be connected in series. Suppose, if one of ... and 4r C. 2E and 2r D. 4E and 2r

Description : The maximum power dissipated in an external resistance R, when connected to a cell of emf E and internal resistance r, will be

Last Answer : The maximum power dissipated in an external resistance R, when connected to a cell of emf E and internal resistance r, ... /(3r)` D. `(E^(2))/(4r)`

Description : A neon flashlight cell with an emf of 1.5V gives a current of 15A when connected directly to an ammeter of resistance 0.04?. Internal resistance of the cell is a. 0.0004? b. 0.06? c. 0.10? d. 0.13?

Last Answer : b. 0.06?

Description : The reading of a voltmoter when a cell is connected to it is 2.2 V. When the terminals of the cell are connected to a resistance of `4 Omega`, the vol

Last Answer : The reading of a voltmoter when a cell is connected to it is 2.2 V. When the terminals of the ... to 2 V. Find the internal resistance of the cell.

Description : A resistance of `4 Omega` and a wire of length 5 meters and resistance `5 Omega` are joined in series and connected to a cell of e.m.f. `10 V` and int

Last Answer : A resistance of `4 Omega` and a wire of length 5 meters and resistance `5 Omega` are joined in series and connected ... `3.0V` C. `0.67V` D. `1.33V`

Description : The internal resistance of a `2.1 V` cell which gives a current `0.2 A` through a resistance of `10 Omega`

Last Answer : The internal resistance of a `2.1 V` cell which gives a current `0.2 A` through a resistance of `10 Omega` A ... Omega` C. `0.8 Omega` D. `1.0 Omega`

Description : The emf of a cell E is 15 V as shown in the figure with an internal resistance of `0.5Omega`. Then the value of the current drawn from the cell is

Last Answer : The emf of a cell E is 15 V as shown in the figure with an internal resistance of `0.5Omega`. Then the value of ... A. `3A` B. `2A` C. `5A` D. `1A`

Description : Find the minimum number of cells required to produce an electric current of 1.5 A through a resistance of `30 Omega`. Given that the emf of each cell

Last Answer : Find the minimum number of cells required to produce an electric current of 1.5 A through a resistance ... .5 V and internal resistance `1.0 Omega`.

Description : Two cells connected in series have electromotive force of 1.5 V each. Their internal resistances are `0.5 Omega` and `0.25 Omega` respectively. This c

Last Answer : Two cells connected in series have electromotive force of 1.5 V each. Their internal ... potential differnce across the terminals of each cell.

Description : Two resistors of resistances `2Omega` and `6Omega` are connected in parallel. This combination is then connected to a battery of emf 2 V and internal

Last Answer : Two resistors of resistances `2Omega` and `6Omega` are connected in parallel. This combination is then connected to a ... . `(4)/(17)A` D. `1 A`

Description : Determine the voltage drop across the resistance `R_(1)` in the circuit given in Fig. 4.55 with `epsilon=90 V, R_(1)=5 k Omega, R_(2)=5k Omega, R_(3)=

Last Answer : Determine the voltage drop across the resistance `R_(1)` in the circuit given in Fig. 4.55 with `epsilon=90 V, ... k Omega " and " R_(4)=10 k Omega`.

Description : A potential difference of 10 V is applied across a conductor of resistance `1 k Omega`. Find the number of electrons flowing through the conductor in

Last Answer : A potential difference of 10 V is applied across a conductor of resistance `1 k Omega`. ... of electrons flowing through the conductor in 5 minutes.

Description : Two cells, having the same emf, are connected in series through an external resistance `R`. Cells have internal resistance `r_(1)` and `r_(2) (r_(1) g

Last Answer : Two cells, having the same emf, are connected in series through an external resistance `R`. Cells have internal resistance ... D. `(r_(1)+r_(2))/(2)`

Description : A battery of emf E has an internal resistance r. A variable resistacne R is connected to the terminals of the battery. A current `i` is drawn from the

Last Answer : A battery of emf E has an internal resistance r. A variable resistacne R is connected to the terminals of ... infinity, `(E)/(r)`, V approaches E

Description : There are n cells, each of emf E and internal resistance r, connected in series with an external resistance R. One of the cells is wrongly connected,

Last Answer : There are n cells, each of emf E and internal resistance r, connected in series with an external resistance R. One of the ... D. `((n-2)E)/((n-2)r+R)`

Description : When two batteries are connected in parallel, it should be ensured that A. They have same emf B. They have same make C. They have same ampere hour capacity D. They have identical internal resistance

Last Answer : A. They have same emf

Description : A galvanometer of resistance `50 Omega` is connected to a battery of 8 V along with a resistance of `3950 Omega` in series. A full scale deflection of

Last Answer : A galvanometer of resistance `50 Omega` is connected to a battery of 8 V along with a resistance of `3950 Omega ... `. A. 1950 B. 7900 C. 2000 D. 7950

Description : When a resistance of 100`Omega` is connected in series with a galvanometer of resistance R, then its range is V. To double its range, a resistance of

Last Answer : When a resistance of 100`Omega` is connected in series with a galvanometer of resistance R, then its range ... 800`Omega` C. 900`Omega` D. 100`Omega`

Description : A galvanometer of resistance `50 Omega ` is connected to a battery of `3 V` along with resistance of `2950 Omega` in series. A full scale deflection o

Last Answer : A galvanometer of resistance `50 Omega ` is connected to a battery of `3 V` along with resistance of `2950 ... `Omega` C. 5550 `Omega` D. 6050 `Omega`

Description : Potentiometer wire of length `1 m` is connected in series with `490 Omega` resistance and `2 V` battery. If `0.2 mV/cm` is the potential gradient, the

Last Answer : Potentiometer wire of length `1 m` is connected in series with `490 Omega` resistance and `2 V` battery. If ... 7.9Omega` C. `5.9Omega` D. `6.9Omega`

Description : A resistance of `1980Omega` is connected in series with a voltmeter, after which the scale division becomes 100 times larger. Find the resistance of v

Last Answer : A resistance of `1980Omega` is connected in series with a voltmeter, after which the scale division becomes ... . `20Omega` C. `30Omega` D. `40Omega`

Description : In the circuit shown in Fig. 4.64, the battery has an emf of 12.0 V and an internal resistance of `5R//11`. If the ammeter reads 2.0 A, what is the va

Last Answer : In the circuit shown in Fig. 4.64, the battery has an emf of 12.0 V and an internal resistance of ` ... ammeter reads 2.0 A, what is the value of R ?