The internal resistance of a `2.1 V` cell which gives a current `0.2 A` through a resistance of `10 Omega`

1 Answer

Answer :

The internal resistance of a `2.1 V` cell which gives a current `0.2 A` through a resistance of `10 Omega` A ... Omega` C. `0.8 Omega` D. `1.0 Omega`

Related questions

Description : How would you arrange 64 similar cells each having an emf of 2.0 V and internal resistance `2 Omega` so as to send maximum current through an external

Last Answer : How would you arrange 64 similar cells each having an emf of 2.0 V and internal resistance ` ... current through an external resistance of `8 Omega`.

Description : 10 cells, each of internal resistance `0.5 Omega` and 1.2 V emf are connected (a) all in series and (b) all in paralle. Calculate the current sent in

Last Answer : 10 cells, each of internal resistance `0.5 Omega` and 1.2 V emf are connected (a) all in ... each case through a wire of resistance `0.8 Omega`.

Description : A battery of emf 2 V and internal resistance `0.5 Omega` is connected across a resistance of `9.5 Omega`. How many electrons pass through a cross-sect

Last Answer : A battery of emf 2 V and internal resistance `0.5 Omega` is connected across a resistance of `9. ... a cross-section of the resistance in 1 second ?

Description : A galvanometer has a coil of resistance `100 Omega` and gives a full-scale deflection for `30 mA` current. If it is to work as a voltmeter of `30 V` r

Last Answer : A galvanometer has a coil of resistance `100 Omega` and gives a full-scale deflection for `30 mA` current. ... Omega` C. `1000 Omega` D. `1800 Omega`

Description : A wire of length 100 cm is connected to a cell of emf 2 V and negligible internal resistance. The resistance of the wire is `3 Omega`. The additional

Last Answer : A wire of length 100 cm is connected to a cell of emf 2 V and negligible internal resistance. The ... B. `47Omega` C. `57Omega` D. `35Omega`

Description : A voltmeter of resistance `998 Omega` is connected across a cell of emf 2 V and internal resistance `2 Omega`. Find the p.d. across the voltmeter, tha

Last Answer : A voltmeter of resistance `998 Omega` is connected across a cell of emf 2 V and internal resistance `2 Omega`. Find the ... B. `3.5 V` C. 5 V D. 6 V

Description : The range of voltmeter is 10 V and its internal resistance is `50 Omega`. To convert it to voltmeter of range 15 V, how much resistance is to be added

Last Answer : The range of voltmeter is 10 V and its internal resistance is `50 Omega`. To convert it to ... in parallel D. Add `125 Omega` resistor in series

Description : Two electric bulbs rated 50 W and 100 W are glowing at full powr, when used in parallel with a battery of emf 120 V and internal resistance 10 `Omega`

Last Answer : Two electric bulbs rated 50 W and 100 W are glowing at full powr, when used in parallel with a battery of emf 120 V ... power, is A. 6 B. 4 C. 2 D. 8

Description : Three identical, each of emf 2 V and internal resistance `0.2 Omega` are connected in series to an external resistor of `7.4 Omega`. Calculate the cur

Last Answer : Three identical, each of emf 2 V and internal resistance `0.2 Omega` are connected in series to ... 7.4 Omega`. Calculate the current in the circuit.

Description : The emf of a battery is 4.0 V and its internal resistance is `1.5 Omega`. Its potential difference is measured by a voltmeter of resistance `1000 Omeg

Last Answer : The emf of a battery is 4.0 V and its internal resistance is `1.5 Omega`. Its potential ... percentage error in the reading of emf shown by voltmeter.

Description : The potential differnce between the terminals of a battery of emf 6.0 V and internal resistance `1 Omega` drops to 5.8 V when connected across an exte

Last Answer : The potential differnce between the terminals of a battery of emf 6.0 V and internal resistance ... resistor . Find the resistance of the external res

Description : A 20 V battery of internal resistance `1 Omega` is connected to three coils of `12 Omega, 6 Omega` and `4 Omega` in parallel, a resistor of `5Omega` a

Last Answer : A 20 V battery of internal resistance `1 Omega` is connected to three coils of `12 ... and the terminal potential difference across each battery.

Description : Three identical cells each of emf 2 V and unknown internal resistance are connected in parallel. This combination is connected to a `5 Omega` resistor

Last Answer : Three identical cells each of emf 2 V and unknown internal resistance are connected in parallel. ... what is the internal resistance of each cell ?

Description : A `100 V` voltmeter of internal resistance `20 k Omega` in series with a high resistance `R` is connected to a `110 V` line. The voltmeter reads `5 V`

Last Answer : A `100 V` voltmeter of internal resistance `20 k Omega` in series with a high resistance `R` is ... B. `315kOmega` C. `420kOmega` D. `440kOmega`

Description : Each resistor shown in the figure has a resistance of `10 Omega` and the battery has the emf 6 V. What will be the current supplied by the battery ?

Last Answer : Each resistor shown in the figure has a resistance of `10 Omega` and the battery has the emf 6 V. What will be the ... 2 A` C. `1.8 A` D. `0.3 A`

Description : A neon flashlight cell with an emf of 1.5V gives a current of 15A when connected directly to an ammeter of resistance 0.04?. Internal resistance of the cell is a. 0.0004? b. 0.06? c. 0.10? d. 0.13?

Last Answer : b. 0.06?

Description : A resistance of `4 Omega` and a wire of length 5 meters and resistance `5 Omega` are joined in series and connected to a cell of e.m.f. `10 V` and int

Last Answer : A resistance of `4 Omega` and a wire of length 5 meters and resistance `5 Omega` are joined in series and connected ... `3.0V` C. `0.67V` D. `1.33V`

Description : A potential difference of 10 V is applied across a conductor of resistance `1 k Omega`. Find the number of electrons flowing through the conductor in

Last Answer : A potential difference of 10 V is applied across a conductor of resistance `1 k Omega`. ... of electrons flowing through the conductor in 5 minutes.

Description : A galvanometer having internal resistance `10 Omega` required `0.01` A for a full scale deflection. To convert this galvanometer to a voltmeter of ful

Last Answer : A galvanometer having internal resistance `10 Omega` required `0.01` A for a full scale deflection. ... Omega` in series D. `12010 Omega` in parallel

Description : In given figure, the potentiometer wire AB has a resistance of `5 Omega` and length 10 m . The balancing length AM for the emf of 0.4 V is

Last Answer : In given figure, the potentiometer wire AB has a resistance of `5 Omega` and length 10 m . The balancing length AM for ... B. 4 m C. `0.8` m D. 8 m

Description : In the Wheatstone network given, `P=10 Omega, Q=20Omega, R=15Omega, S=30Omega`, the current passing through the battery (of negligible internal resist

Last Answer : In the Wheatstone network given, `P=10 Omega, Q=20Omega, R=15Omega, S=30Omega`, the current passing through the ... zero C. `0.18 A` D. `0.72 A`

Description : Two cells connected in series have electromotive force of 1.5 V each. Their internal resistances are `0.5 Omega` and `0.25 Omega` respectively. This c

Last Answer : Two cells connected in series have electromotive force of 1.5 V each. Their internal ... potential differnce across the terminals of each cell.

Description : Two cells of emf of 1.5 V and 2.0 V having internal resistances of `1 Omega` and `2 Omega`, respectively are connected in parallel so as to send curre

Last Answer : Two cells of emf of 1.5 V and 2.0 V having internal resistances of `1 Omega` and `2 Omega` ... of `5 Omega`. Find the current in the external circuit.

Description : The reading of a voltmoter when a cell is connected to it is 2.2 V. When the terminals of the cell are connected to a resistance of `4 Omega`, the vol

Last Answer : The reading of a voltmoter when a cell is connected to it is 2.2 V. When the terminals of the ... to 2 V. Find the internal resistance of the cell.

Description : Find the minimum number of cells required to produce an electric current of 1.5 A through a resistance of `30 Omega`. Given that the emf of each cell

Last Answer : Find the minimum number of cells required to produce an electric current of 1.5 A through a resistance ... .5 V and internal resistance `1.0 Omega`.

Description : In the circuit shown in Fig. 4.63, the terminal voltage of the battery is 6.0 V. Find the current I through the `18 Omega` resistor.

Last Answer : In the circuit shown in Fig. 4.63, the terminal voltage of the battery is 6.0 V. Find the current I through the `18 Omega` resistor.

Description : The emf of a cell E is 15 V as shown in the figure with an internal resistance of `0.5Omega`. Then the value of the current drawn from the cell is

Last Answer : The emf of a cell E is 15 V as shown in the figure with an internal resistance of `0.5Omega`. Then the value of ... A. `3A` B. `2A` C. `5A` D. `1A`

Description : Potentiometer wire of length `1 m` is connected in series with `490 Omega` resistance and `2 V` battery. If `0.2 mV/cm` is the potential gradient, the

Last Answer : Potentiometer wire of length `1 m` is connected in series with `490 Omega` resistance and `2 V` battery. If ... 7.9Omega` C. `5.9Omega` D. `6.9Omega`

Description : A potential difference of V = 100 ± 2 volt, when applied across a resistance R gives a current of 10 ± 0.5 ampere.

Last Answer : A potential difference of V = 100 2 volt, when applied across a resistance R gives a current of 10 ... percentage error in R given by R = V/I.

Description : When 10 cells in series are connected to the ends of a resistance of `59 Omega`, the current is found to be 0.25 A, but when the same cells after bein

Last Answer : When 10 cells in series are connected to the ends of a resistance of `59 Omega`, the ... Calculate the internal resistance and emf of each cell.

Description : 4. A three-phase, four-wire system having \( 250 V \) line-to-neutral has the following loads connected between the respective lines and the neutral. Calculate the current in the neutral wire?\[Z_{R}=20 \angle 0^{\circ} ... Z_{Y}=20 \angle 35^{\circ} \Omega, Z_{B}=20 \angle-55^{\circ} \Omega\](10M)

Last Answer : 4. A three-phase, four-wire system having \( 250 V \) line-to-neutral has the following loads connected ... =20 \angle-55^{\circ} \Omega \] (10M)

Description : 4. A three-phase, four-wire system having \( 250 V \) line-to-neutral has the following loads connected between the respective lines and the neutral. Calculate the current in the neutral wire?\[Z_{R}=20 \angle 0^{\circ} ... Z_{Y}=20 \angle 35^{\circ} \Omega, Z_{B}=20 \angle-55^{\circ} \Omega\](10M)

Last Answer : 4. A three-phase, four-wire system having \( 250 V \) line-to-neutral has the following loads connected ... =20 \angle-55^{\circ} \Omega \] (10M)

Description : 4. A three-phase, four-wire system having \( 250 V \) line-to-neutral has the following loads connected between the respective lines and the neutral. Calculate the current in the neutral wire?\[Z_{R}=20 \angle 0^{\circ} ... Z_{Y}=20 \angle 35^{\circ} \Omega, Z_{B}=20 \angle-55^{\circ} \Omega\](10M)

Last Answer : 4. A three-phase, four-wire system having \( 250 V \) line-to-neutral has the following loads connected ... =20 \angle-55^{\circ} \Omega \] (10M)

Description : Determine the voltage drop across the resistance `R_(1)` in the circuit given in Fig. 4.55 with `epsilon=90 V, R_(1)=5 k Omega, R_(2)=5k Omega, R_(3)=

Last Answer : Determine the voltage drop across the resistance `R_(1)` in the circuit given in Fig. 4.55 with `epsilon=90 V, ... k Omega " and " R_(4)=10 k Omega`.

Description : In the circuit diagram shown in Fig. 4.53, a voltmeter reads 30 V when connected across `400 Omega` resistance. Calculate what the same voltmeter read

Last Answer : In the circuit diagram shown in Fig. 4.53, a voltmeter reads 30 V when connected across `400 ... when it is connected across `300 Omega` resistance.

Description : A voltmeter of range 2 V and resistance `300 Omega` cannot be converted into ammeter of range

Last Answer : A voltmeter of range 2 V and resistance `300 Omega` cannot be converted into ammeter of range A. `1 A` B. `1 mA` C. `100 mA` D. `10 mA`

Description : In the circuit shown the cells `A` and `B` have negligible resistance. For `V_(A) = 12 V, R_(1) = 500 Omega` and `R = 100 Omega`, the galvanometer `(G

Last Answer : In the circuit shown the cells `A` and `B` have negligible resistance. For `V_(A) = 12 V, R_(1) = 500 Omega` and ` ... A. 4 V B. 2 V C. 12 V D. 6 V

Description : A galvanometer of resistance `50 Omega` is connected to a battery of 8 V along with a resistance of `3950 Omega` in series. A full scale deflection of

Last Answer : A galvanometer of resistance `50 Omega` is connected to a battery of 8 V along with a resistance of `3950 Omega ... `. A. 1950 B. 7900 C. 2000 D. 7950

Description : In the given circuit, the voltmeter records 5 V. The resistance of the voltmeter in `Omega` is

Last Answer : In the given circuit, the voltmeter records 5 V. The resistance of the voltmeter in `Omega` is A. 200 B. 100 C. 10 D. 50

Description : When a resistance of 100`Omega` is connected in series with a galvanometer of resistance R, then its range is V. To double its range, a resistance of

Last Answer : When a resistance of 100`Omega` is connected in series with a galvanometer of resistance R, then its range ... 800`Omega` C. 900`Omega` D. 100`Omega`

Description : A galvanometer of resistance `50 Omega ` is connected to a battery of `3 V` along with resistance of `2950 Omega` in series. A full scale deflection o

Last Answer : A galvanometer of resistance `50 Omega ` is connected to a battery of `3 V` along with resistance of `2950 ... `Omega` C. 5550 `Omega` D. 6050 `Omega`

Description : In the given circuit diagram if each resistance is of `10 Omega`, then the current in arm AD will be

Last Answer : In the given circuit diagram if each resistance is of `10 Omega`, then the current in arm AD will be A. `(i)/(5)` ... )` C. `(3i)/(5)` D. `(4i)/(5)`

Description : When a resistance of `2 Omega` is placed across the terminals of a battery, the current is 0.5 A. When the resistance across the terminals of the batt

Last Answer : When a resistance of `2 Omega` is placed across the terminals of a battery, the current is 0 ... emf of the battery and also its internal resistance.

Description : A DC ammeter has resistance `0.1 Omega` and its current ranges `0-100 A`. If the range is to be extended to `0-500`, then the following shunt resistan

Last Answer : A DC ammeter has resistance `0.1 Omega` and its current ranges `0-100 A`. If the range is to be extended ... Omega` C. `0.025 Omega` D. `0.25 Omega`

Description : A potentiometer wire of length `100 cm` having a resistance of `10 Omega` is connected in series with a resistance `R` and a cell of emf `2V` of negli

Last Answer : A potentiometer wire of length `100 cm` having a resistance of `10 Omega` is connected in series with a ... Omega` C. `790 Omega` D. `840 Omega`

Description : Which one of the following is the advantage of connecting two dry cells in parallel instead of in series? Is it because the parallel arrangement: w) gives twice the EMF of one dry cell x) has no ... circuit half as fast as would a single cell z) has half the internal resistance of a single cell

Last Answer : ANSWER: Z -- HAS HALF THE INTERNAL RESISTANCE OF A SINGLE CELL 

Description : A plantinum wire has resistance of `10 Omega` at `0^(@)C` and `20 Omega` at `273^(@)C`. Find the value of coefficient of resistance.

Last Answer : A plantinum wire has resistance of `10 Omega` at `0^(@)C` and `20 Omega` at `273^(@)C`. Find the value of coefficient of resistance.

Description : What length of a wire of diameter 0.46 mm and specific resistance `50xx10^(-6) Omega`m would be required to make a coil of resistance `10 Omega` ?

Last Answer : What length of a wire of diameter 0.46 mm and specific resistance `50xx10^(-6) Omega`m would be required to make a coil of resistance `10 Omega` ?

Description : 24 cells of emf `1.5 V` each having internal resistance of 1 ohm are connected to an external resistance of `1.5` ohms. To get maximum current,

Last Answer : 24 cells of emf `1.5 V` each having internal resistance of 1 ohm are connected to an external ... in series and 4 such rows are connected in parallel

Description : The value of current in the \( 6 \Omega \) resistance is:

Last Answer : The value of current in the \( 6 \Omega \) resistance is: