A current of `0.1 A` circulates around a coil of 100 turns and having a radius equal to `5 cm`. The magnetic field set up at the centre of the coil is

1 Answer

Answer :

A current of `0.1 A` circulates around a coil of 100 turns and having a radius equal to `5 cm`. The magnetic ... C. `4pixx10^(-5)T` D. `2pixx10^(-5)T`

Related questions

Description : A circular coil of radius `10 cm "and" 100` turns carries a current 1A. What is the magnetic moment of the coil?

Last Answer : A circular coil of radius `10 cm "and" 100` turns carries a current 1A. What is the magnetic moment of the coil? A. ... 3,142 A-m^(2)` D. `3 A-m^(2)`

Description : A toroid having 200 turns carries a current of 1A. The average radius of the toroid is 10 cm. the magnetic field at any point in the open space inside

Last Answer : A toroid having 200 turns carries a current of 1A. The average radius of the toroid is 10 cm. the magnetic field ... 0.5xx10^(-3)T` D. `2xx10^(-3)T`

Description : A solenoid has length `0.4cm`, radius 1 cm and 400 turns of wire. If a current fo 5 A is passed through this solenoid, then what is the magnetic field

Last Answer : A solenoid has length `0.4cm`, radius 1 cm and 400 turns of wire. If a current fo 5 A is passed through this ... `6.28xx10^(-7)T` D. `6.28xx10^(-6)T`

Description : A 100 turns coil shown in figure carries a current of 2 amp in a magnetic field `B=0.2 Wb//m^(2)`. The torque acting on the coil is

Last Answer : A 100 turns coil shown in figure carries a current of 2 amp in a magnetic field `B=0.2 Wb//m^( ... N-m` tending to rotate the side AD into of the page

Description : A planar coil having 12 turns carries 15 A current. The coil is oriented with respect to the uniform magnetic field `B= 0.2hati T` such that its direc

Last Answer : A planar coil having 12 turns carries 15 A current. The coil is oriented with respect to the ... energy of the coil in the given orientation is

Description : The magnetic field at the centre of a circular coil of radius `r` carrying current `l` is `B_(1)`. The field at the centre of another coil of radius `

Last Answer : The magnetic field at the centre of a circular coil of radius `r` carrying current `l` is `B_(1)`. The field at the ... `1//2` B. `1` C. `2` D. `4`

Description : The magnetic field at a point on the axis of a long solenoid having 5 turns per cm length when a current of 0.8 A flows through it is

Last Answer : The magnetic field at a point on the axis of a long solenoid having 5 turns per cm length when a current of 0.8 A ... )` D. `8.024xx10^(-8) Wb//m^(2)`

Description : The magnetic field due to a current carrying circular loop of radius 3 cm at a point on the axis at a distance of 4cm from the centre is `54muT`. What

Last Answer : The magnetic field due to a current carrying circular loop of radius 3 cm at a point on the axis at a distance of ... T` C. `125 mu T` D. `75 mu T`

Description : A circular current carrying coil has a radius R. The distance from the centre of the coil on the axis where the magnetic induction will be `(1//8)^(th

Last Answer : A circular current carrying coil has a radius R. The distance from the centre of the coil on the axis where the ... 2//sqrt(3))R` D. `R//2sqrt(3)`

Description : A square coil of edge I having n turns carries a curent i. it is kept on a smooth horizontal plate. A uniform magnetic field B exists in a direction p

Last Answer : A square coil of edge I having n turns carries a curent i. it is kept on a smooth horizontal plate. A uniform ... . `(Mg)/(4niL)` D. `(2Mg)/(niL)`

Description : A rheostat has 100 turns of a wire of radius 0.4 mm having resistivity `4.2xx10^(-7) Omega`m. The diameter of each turn is 3 cm. What is the maximum v

Last Answer : A rheostat has 100 turns of a wire of radius 0.4 mm having resistivity `4.2xx10^(-7) ... the maximum value of resistance that it can introduce ?

Description : A circular coil of `20turns` and radius `10cm` carries a current of `5A`. It is placed in a uniform magnetic field of `0*10T`. Find the torque acting

Last Answer : A circular coil of `20turns` and radius `10cm` carries a current of `5A`. It is placed in a uniform magnetic ... Nm B. 3.14 Nm C. 0.314 Nm D. zero

Description : Magnetic field due to a ring having n turns at a distance `x` on its axis is proportional to (if `r =` radius of ring)

Last Answer : Magnetic field due to a ring having n turns at a distance `x` on its axis is proportional to (if `r =` radius of ring) ... 2))/((x^(2)+r^(2))^(3//2))`

Description : Find the magnetic field intensity of a toroid of turns 40 and radius 20cm. The current carried by the toroid be 3.25A. a) 103.45 b) 102 c) 105.7 d) 171

Last Answer : a) 103.45

Description : Find the magnetic field when a circular conductor of very high radius is subjected to a current of 12A and the point P is at the centre of the conductor. a) 1 b) ∞ c) 0 d) -∞

Last Answer : c) 0

Description : A magnetic circuit has effective iron length of 100 cm and it is wound with 800 turns of wire carries 1 A. Find the magnetic field strength.

Last Answer : magnetic field strength

Description : A current of 2 A is made to flow through a coil which has only one turn. The magnetic field produced at the centre is`4pi xx 10^(-6) "Wb"//m^(2).` the

Last Answer : A current of 2 A is made to flow through a coil which has only one turn. The magnetic field produced at the centre is` ... m` C. `0.1 m` D. `0.001 m`

Description : The magnetic field intensity at the centre of a current carrying coil of diameter J m is K. The current flowing in the coil is

Last Answer : The magnetic field intensity at the centre of a current carrying coil of diameter d m is H. The current flowing in the coil is dH

Description : Sensitivity of a galvanometer can be increased by a) Increasing the number of turns of the coil b) Decreasing the magnetic field c) Increasing the ratio c ⁄BAN d) Decreasing the area of the coil

Last Answer : a) Increasing the number of turns of the coil

Description : A coil of wire is placed in a changing magnetic field. If the number of turns in the coil is decreased, the voltage induced across the coil will: A. increase B. decrease C. remain constant D. be excessive

Last Answer : A coil of wire is placed in a changing magnetic field. If the number of turns in the coil is decreased, the voltage induced across the coil will: decrease

Description : The induced voltage across a coil with 250 turns that is located in a magnetic field and is changing at a rate of 8 Wb/s is A. 1,000 V B. 2,000 V C.31.25 V D. 3,125 V

Last Answer : The induced voltage across a coil with 250 turns that is located in a magnetic field and is changing at a rate of 8 Wb/s is 2,000 V 

Description : Calculate the magnetic field at a point on the centre of the circular conductor of radius 2m with current 8A. a) 1 b) 2 c) 3 d) 4

Last Answer : b) 2

Description : An iron ring of mean circumference 80 cm is uniformly wound with 500 turns of wire and carries 0.8A. Find the magnetic field strength. 

Last Answer : Ans: Magnetic field strength H = NI /l = 500 x 0.8 / 80 x 10-2 = 500 AT/m

Description : A long wire carries a steady curent . It is bent into a circle of one turn and the magnetic field at the centre of the coil is `B`. It is then bent in

Last Answer : A long wire carries a steady curent . It is bent into a circle of one turn and the magnetic field at the centre of ... ^(2)B` C. `2nB` D. `2n^(2)B`

Description : Find the magnetic field intensity due to a solenoid of length 12cm having 30 turns and current of 1.5A. a) 250 b) 325 c) 175 d) 375

Last Answer : d) 375

Description : A closely coiled helical spring of radius R, contains n turns and is subjected to an axial load W. If  the radius of the coil wire is r and modulus of rigidity of the coil material is C, the deflection of the  coil is  (A) WR3n/Cr4 (B) 2WR3n/Cr4 (C) 3WR3n/Cr4 (D) 4WR3n/Cr

Last Answer : (D) 4WR3n/Cr

Description : A closely coiled helical spring of radius R, contains n turns and is subjected to an axial loadW. If the radius of the coil wire is r and modulus of rigidity of the coil material is C, the stress developed in the helical spring is (A) WR/ 3 (B) 2WR/ 3 (C) 2WR/ 2 (D) 4WR/ 2

Last Answer : (B) 2WR/ 3

Description : When a certain length of wire is turned into one circular loop, the magnetic induction at the centre of coil due to some current flowing is `B_(1)` If

Last Answer : When a certain length of wire is turned into one circular loop, the magnetic induction at the centre of coil due to ... 1)` C. `3B_(1)` D. `27B_(1)`

Description : An electron moving in a circular orbit of radius `r` makes `n` rotation per secound. The magnetic field produced at the centre has magnitude

Last Answer : An electron moving in a circular orbit of radius `r` makes `n` rotation per secound. The magnetic field produced at ... (r)` D. `(mu_(0)"ne")/(2r)`

Description : An electron moves in a circular orbit with a uniform speed `v`.It produces a magnetic field `B` at the centre of the circle. The radius of the circle

Last Answer : An electron moves in a circular orbit with a uniform speed `v`.It produces a magnetic field `B` at the centre of the ... (v)/(B))` D. `sqrt((B)/(v))`

Description : In the following figure a wire bent in the form of a regular polygon of `n` sides is inscribed in a circle of radius `a`. Net magnetic field at centre

Last Answer : In the following figure a wire bent in the form of a regular polygon of `n` sides is inscribed in a circle of ... (ni)/(a)mu_(0)tan.(pi)/(n)` D.

Description : Find the magnetic field intensity at the centre O of a square of the sides equal to 5m and carrying 10A of current. a) 1.2 b) 1 c) 1.6 d) 1.8

Last Answer : d) 1.8

Description : Calculate the emf when a coil of 100 turns is subjected to a flux rate of 0.3 tesla/sec. a) 3 b) 30 c) -30 d) -300

Last Answer : c) -30

Description : An electron is travelling at right angles to a uniform magnetic field of flux density 1.2 mT with a speed of 8 × 106 m s-1, the radius of circular path followed by electron is A. 3.8 cm B. 3.7 cm C. 3.6 cm D. 3.5 cm

Last Answer : 3.8 cm

Description : The frequency of an alternator at a given RPM is determined by the _____________. A. number of turns of wire in the armature coil B. number of magnetic poles C. strength of the magnets used D. output voltage

Last Answer : Answer: B

Description : One factor that determines the frequency of an alternator is the ____________. A. number of turns of wire in the armature coil B. number of magnetic poles C. strength of the magnets used D. output voltage

Last Answer : Answer: B

Description : E.M.F for a coil depends upon A. the cross sectional area B. no. of turns of wire C. the magnitude of magnetic flux density D. all of above

Last Answer : all of above

Description : The magneitc field produced at the center of a current carrying circular coil of radius r, is

Last Answer : The magneitc field produced at the center of a current carrying circular coil of radius r, is A. directly ... 2)` D. inversely proportional to `r^(2)`

Description : The air around a high pressure area circulates: w) clockwise in the Northern Hemisphere x) counterclockwise in the Northern Hemisphere y) clockwise in the Southern Hemisphere z) in either direction regardless of hemisphere

Last Answer : ANSWER: W -- CLOCKWISE IN THE NORTHERN HEMISPHERE 

Description : Consider the conductor to be a coil of turns 60 and the flux density to be 13.5 units, current 0.12A and area 16units. The torque will be a) 1555.2 b) 1222.5 c) 525.1 d) 255.6

Last Answer : a) 1555.2

Description : Due to the flow of current in a circular loop of radius `R`, the magnetic induction produced at the centre of the loop is `B`. The magnetic moment of

Last Answer : Due to the flow of current in a circular loop of radius `R`, the magnetic induction produced at the centre of the ... )` D. `(2pi BR^(2))/(mu_(0))`

Description : A current `i` ampere flows in a circular arc of wire whose radius is `R`, which subtend an angle `3pi//2` radian at its centre. The magnetic induction

Last Answer : A current `i` ampere flows in a circular arc of wire whose radius is `R`, which subtend an angle `3pi//2` radian at ... 0)i)/(R )` D. `3mu_(0)i)/(8R)`

Description : A solenoid has n turns and length l. If length is reduced to l/2 and turns are doubled then magnetic field B produced by it becomes equal to a) 2B b) 4B c) 1/2 B d) None of these

Last Answer : a) 2B

Description : Find the magnetic field intensity at the radius of 6cm of a coaxial cable with inner and outer radii are 1.5cm and 4cm respectively. The current flowing is 2A. a) 2.73 b) 3.5 c) 0 d) 1.25

Last Answer : c) 0

Description : iv) A rectangular coil free to rotate is placed in uniform magnetic field with its plane parallel to the magnetic lines of force. Then the coil willa) rotate to maximize the magnetic flux through ... since the magnetic flux through its plane is zero.d) experience the constant torque equal to NBIA

Last Answer : iv) A rectangular coil free to rotate is placed in uniform magnetic field with its plane parallel ... d) experience the constant torque equal to NBIA

Description : Calculate the emf of a coil with turns 100 and flux rate 5 units. a) 20 b) -20 c) 500 d) -500

Last Answer : d) -500

Description : Find the inductance of a coil with permeability 3.5, turns 100 and length 2m. Assume the area to be thrice the length. a) 131.94mH b) 94.131mH c) 131.94H d) 94.131H

Last Answer : a) 131.94mH

Description : A chord of a circle of radius 7.5 cm with centre 0 is of length 9 cm. Find its distance from the centre. -Maths 9th

Last Answer : ∵ PM = MQ = 1/2 = PQ = 45 cm and OP = 7.5 cm In right angled ΔOMP, using phthagoras theorem OM2 = OP2 - PM2 ⇒OM2 = 7.52 - 4.52 ⇒OM2 = 56.25 - 20.25 ⇒OM2 = 36 ∴ OM = √36 = 6 cm

Description : A chord of a circle of radius 7.5 cm with centre 0 is of length 9 cm. Find its distance from the centre. -Maths 9th

Last Answer : ∵ PM = MQ = 1/2 = PQ = 45 cm and OP = 7.5 cm In right angled ΔOMP, using phthagoras theorem OM2 = OP2 - PM2 ⇒OM2 = 7.52 - 4.52 ⇒OM2 = 56.25 - 20.25 ⇒OM2 = 36 ∴ OM = √36 = 6 cm

Description : A rectangular coil of copper wires is rotated in a magnetic field. The direction of the induced current changes once in each -Physics-10

Last Answer : half revolution When a rectangular coil is rotated in magnetic field, the direction of the induced current changes once in half revolution. As a result, the direction of the current in the coil remains the same. In text 13.7 Page:238