`2S"(fused)" +Cl_(2) rarr A` `A+H_(2)O rarr HCl+B+C` A, B and C in the above equations are:

1 Answer

Answer :

`2S"(fused)" +Cl_(2) rarr A` `A+H_(2)O rarr HCl+B+C` A, B and C in the above equations are: A. `S_(2)Cl_ ... (2-)` D. `S_(2)Cl_(2),SO_(2),H_(2)SO_(4)`

Related questions

Description : 1 g of complex `[Cr(H_(2)O)_(5)Cl]Cl_(2).H_(2)O` was passed through a cation exchanger to produce HCl. The acid liberated was diluted to 1 litre. What

Last Answer : 1 g of complex `[Cr(H_(2)O)_(5)Cl]Cl_(2).H_(2)O` was passed through a cation ... molarity of acid solution [Molecular weight of complex=266.5]?

Description : `CH_(3)-CH_(2)-CH_(2)-underset(OH)underset(|)(CH)-CH_(3) underset(-H_(2)O)overset(H^(o+))rarr[F] overset(Br_(2)//C Cl_(4))rarrC_(5)H_(10)Br_(2)(G)` Ho

Last Answer : `CH_(3)-CH_(2)-CH_(2)-underset(OH)underset(|)(CH)-CH_(3) underset(-H_(2)O)overset(H^(o+))rarr[F] ... (including all stereoisomers) A. 2 B. 6 C. 3 D. 5

Description : Consider the following set of reactions : `CHCl_(2)COOH+NaOHrarrCHCl_(2)COONa+H_(2)O " " Delta H_(1) = - 12830` Cal. `HCl + NaOH rarr NaCl + H_(2)O "

Last Answer : Consider the following set of reactions : `CHCl_(2)COOH+NaOHrarrCHCl_(2)COONa+H_(2)O " " Delta H_(1) = - 12830 ... H^(+) + OH^(-)` is `-13680`Cal.

Description : The change in the enthalpy of `NaOH+HCl rarr NaCl+H_(2)O` is called :

Last Answer : The change in the enthalpy of `NaOH+HCl rarr NaCl+H_(2)O` is called : A. Heat of ... of reaction C. Heat of hydration D. Heat of solution

Description : In the reaction, `C_(6)H_(5)NH_(2)underset(0-5^(@)C)overset(NaNO_(2)+HCl)rarr(A)underset(KCN)overset(CuCN)rarr(B)overset(H^(+)//H_(2)O)rarr(C)` the pr

Last Answer : In the reaction, `C_(6)H_(5)NH_(2)underset(0-5^(@)C)overset(NaNO_(2)+HCl)rarr(A)underset(KCN)overset(CuCN ... COOH` C. `C_(6)H_(5)OH` D. none of these

Description : Bond dissociation enthalpy of `H_(2)` , `Cl_(2)` and `HCl` are `434, 242` and `431KJmol^(-1)` respectively. Enthalpy of formation of `HCl` is

Last Answer : Bond dissociation enthalpy of `H_(2)` , `Cl_(2)` and `HCl` are `434, 242` and `431KJmol^(-1)` respectively. ... kJ mol^(-1)` D. `-245 kJ mol^(-1)`

Description : If, `H_(2)(g)+Cl_(2)(g)rarr 2HCl(g) , Delta H^(@)=-44` Kcal `2Na(s)+2HCl(g)rarr 2NaCl(s)+H_(2)(g), Delta H=-152` Kcal Then, `Na(s)+0.5Cl_(2)(g)rarr Na

Last Answer : If, `H_(2)(g)+Cl_(2)(g)rarr 2HCl(g) , Delta H^(@)=-44` Kcal `2Na(s)+2HCl(g)rarr 2NaCl(s)+H_(2)( ... ` A. 108 Kcal B. 196 Kcal C. `-98` Kcal D. 54 Kcal

Description : For the reactions, (i) `H_(2)(g)+Cl_(2)(g)rarr 2HCl(g)+ xKJ` (ii) `H_(2)(g)+Cl_(2)(g)rarr 2HCl(l)+ yKJ` Which one of the following statement is correc

Last Answer : For the reactions, (i) `H_(2)(g)+Cl_(2)(g)rarr 2HCl(g)+ xKJ` (ii) `H_(2)(g)+Cl_(2)(g)rarr 2HCl(l)+ ... x gt y B. x lt y C. x = y D. More data required

Description : `S_(1): 2Se_(2)Cl_(2)rarr SeCl_(4)+3Se` `S_(2)` : Dioxides like `MnO_(2), PbO_(2)` do not form `H_(2)O_(2)` with dilute acids but they evolve oxygen w

Last Answer : `S_(1): 2Se_(2)Cl_(2)rarr SeCl_(4)+3Se` `S_(2)` : Dioxides like `MnO_(2), PbO_(2)` do not ... when boiled with water. A. FTTT B. TFTT C. FFTT D. TTTF

Description : How many N atom are present in final product `overset(Sn//HCl)rarr overset(NaNO_(2)//HCl)rarr overset(H_(3)PO_(2))rarr` Final product.

Last Answer : How many N atom are present in final product `overset(Sn//HCl)rarr overset(NaNO_(2)//HCl)rarr overset(H_(3)PO_(2))rarr` Final product.

Description : Reaction (A) `S^(-2)+4H_(2)O_(2)rarrSO_(4)^(2-)+4H_(2)O` (B) `Cl_(2)+H_(2)O_(2)rarr2HCl+O_(2)` The true statement regarding the above reactions is :

Last Answer : Reaction (A) `S^(-2)+4H_(2)O_(2)rarrSO_(4)^(2-)+4H_(2)O` (B) `Cl_(2)+H_(2)O_(2) ... 2)` acts as reductant in reaction (A) and oxidant in reactin (B)

Description : The eq. wt. of `Na_(2)S_(2)O_(3)` as reductant in the reaction, `Na_(2)S_(2)O_(3)+H_(2)O+Cl_(2)rarrNa_(2)SO_(4)+2HCl+S` is :

Last Answer : The eq. wt. of `Na_(2)S_(2)O_(3)` as reductant in the reaction, `Na_(2)S_(2)O_(3)+H_(2)O+Cl_(2)rarrNa_(2) ... wt.)/2 C. (Mol. wt.)/6 D. (Mol. wt.)/8

Description : In the reaction, `Cl_(2)+OH^(-)rarrCl^(-)+ClO_(4)^(-1)+H_(2)O`, chlorine is:

Last Answer : In the reaction, `Cl_(2)+OH^(-)rarrCl^(-)+ClO_(4)^(-1)+H_(2)O`, chlorine is: A. ... C. Oxidised as well as reduced D. Neigher oxidised nor reduced

Description : The product of the chemical reaction between `Na_(2)S_(2)O_(3)`, `Cl_(2)` and `H_(2)O` are

Last Answer : The product of the chemical reaction between `Na_(2)S_(2)O_(3)`, `Cl_(2)` and `H_(2)O` are A. `HCl + Na_( ... + Na_(2)SO_(3)` D. `NaHClO_(3) + H_(2)O`

Description : The product of the chemical reaction between `Na_(2)S_(2)O_(3)`, `Cl_(2)` and `H_(2)O` are

Last Answer : The product of the chemical reaction between `Na_(2)S_(2)O_(3)`, `Cl_(2)` and `H_(2)O` are A. `HCl + Na_( ... + Na_(2)SO_(3)` D. `NaHClO_(3) + H_(2)O`

Description : In the following reaction, `SO_(4)` acts as a reducing agent: `SO_(2)+Cl_(2)+2H_(2)O to H_(2)SO_(4)+3HCl` Find the equivalent weight of `SO_(2)`.

Last Answer : In the following reaction, `SO_(4)` acts as a reducing agent: `SO_(2)+Cl_(2)+2H_(2)O to H_(2)SO_(4)+3HCl` Find the equivalent weight of `SO_(2)`.

Description : The oxidation state of Cr in `[Cr(H_(2)O)_(6)]Cl_(3), [Cr(C_(6)H_(6))_(2)], and K_(2)[Cr(CN)_(2)(O)_(2)(O_(2))(NH_(3))]` respectively are :

Last Answer : The oxidation state of Cr in `[Cr(H_(2)O)_(6)]Cl_(3), [Cr(C_(6)H_(6))_(2)], and K_(2)[Cr(CN)_(2)(O)_(2 ... and +4` C. `+3,+4 and +6` D. `+3,+2 and +4`

Description : The possible number of geometrical isomers for the complex `[CoL_(2) Cl_(2)]^(-) (L = H_(2)NCH_(2) CH_(2)O^(-))` is (are)....

Last Answer : The possible number of geometrical isomers for the complex `[CoL_(2) Cl_(2)]^(-) (L = H_(2)NCH_(2) CH_(2)O^(-))` is (are)....

Description : Among the complex ions, `[Co(NH_(2) - CH_(2) - CH_(2) - NH_(2))_(2) Cl_(2)]^(+), [CrCl_(2) (C_(2)O_(4))_(2)]^(3-)` `[Fe(H_(2)O)_(4) (OH)_(2)]^(+), [Fe

Last Answer : Among the complex ions, `[Co(NH_(2) - CH_(2) - CH_(2) - NH_(2))_(2) Cl_(2)]^(+), [CrCl_(2) ... (3)) Cl]^(2+)` and that show(s) cis-trans isomerism is

Description : As per IUPAC nomenclature, the name of the complex `[Co(H_(2)O)_(4) (NH_(3))_(2)] Cl_(3)` is

Last Answer : As per IUPAC nomenclature, the name of the complex `[Co(H_(2)O)_(4) ( ... (III) chloride D. Diamminetetraaquacobalt (III) chloride

Description : Among the following complexes : `K_(3)[Fe(CN)_(6)],[Co(NH_(3))_(6)]Cl_(3)` , `Na_(3)[Co ( o x )_(3)],[Ni(H_(2)O)_(6)]Cl_(2)`, `K_(2)[Pt(CN)_(4)]` and

Last Answer : Among the following complexes : `K_(3)[Fe(CN)_(6)],[Co(NH_(3))_(6)]Cl_(3)` , `Na_(3)[Co ( o x )_(3)],[Ni(H_( ... ,M,N B. K,N,O,P C. L,M,O,P D. L,M,N,O

Description : Compound (A), `C_(10)H_(12)O` gives off hydrogen on treatment with sodium metal and decolourises `Br_(2)` in `C Cl_(4)` to give (B), `C_(10)H_(12)OBr`

Last Answer : Compound (A), `C_(10)H_(12)O` gives off hydrogen on treatment with sodium metal and ... pairs of diasteereomers D. A has 2 chiral centres

Description : A `C_(6)H_(12)O` compound does not react with `Br_(2)` in `C Cl_(4)`, produces a flammable gas on treatment with `LiAlH_(4)`, and reacts with `H_(2)Cr

Last Answer : A `C_(6)H_(12)O` compound does not react with `Br_(2)` in `C Cl_(4)`, ... B. methoxycyclopentane C. 2-cyclopropyl-2-propanol D. 2-cyclobutylethanol

Description : solve the system of equations 2r + 2s = 50 and 2r – s = 17. -General Knowledge

Last Answer : Subtract eq1 from eq2: (2r – s = 17) - (2r + 2s = 50): -3s = -33 s = -33/-3 s = 11 Solve for r: 2r + 2(11) = 50 2r = 22 = 50 2r = 50 - 22 2r = 28 r = 28/2 r = 14 set: r = 14, s = 112r + 2s = 50 and 2r – s = 17

Description : `C_(6)H_(5)NH_(2) overset(NaNO_(2)+HCl)underset(0-5^(@)C) X overset(H_(2)O)underset(Delta)toY,` the product is :

Last Answer : `C_(6)H_(5)NH_(2) overset(NaNO_(2)+HCl)underset(0-5^(@)C) X overset(H_(2)O) ... : A. Benzenediazonium chloride B. Nitrobenzene C. Phenol D. Cresol

Description : Compound `A,C_(7)H_(8)O`, is insoluble in water, dilute `HCl`, and aquenous `NaHCO_(3)`, it dissolves in dilute `NaOH`. When `A` is treated with bromi

Last Answer : Compound `A,C_(7)H_(8)O`, is insoluble in water, dilute `HCl`, and aquenous `NaHCO_(3)`, it ... . o-cresol B. m-cresol C. p-cresol D. anisole

Description : The reaction `2K_(2)MnO_(4)+Cl_(2)rarr 2KMnO_(4)+2KCl` is an example of

Last Answer : The reaction `2K_(2)MnO_(4)+Cl_(2)rarr 2KMnO_(4)+2KCl` is an example of A. Redox B. Reduction only C. Neutralization D. Disproportionation

Description : `xP_(4) + y SO_(2)Cl_(2) rarr` then y/x ?

Last Answer : `xP_(4) + y SO_(2)Cl_(2) rarr` then y/x ?

Description : `xP_(4) + y SO_(2)Cl_(2) rarr` then y/x ?

Last Answer : `xP_(4) + y SO_(2)Cl_(2) rarr` then y/x ?

Description : For the process : `H_(2)O (l, 1 atm, 373 K) rArr H_(2)O(g, 1 atm, 373 K)` [Given normal boiling point of water `= 373` K at 1 atm pressure.] The corre

Last Answer : For the process : `H_(2)O (l, 1 atm, 373 K) rArr H_(2)O(g, 1 atm, 373 K)` [Given normal boiling ... lt 0, DeltaU gt 0, Delta H = 0` D. none of these

Description : In the redox reaction . `MnO_(4)^(-)+C^(2)O_(4)^(2-)+H^(+) rarr Mn^(2+)+CO_(2)+H_(2)O` (Unbalance equation) 20 mL of 0.1 M `KMnO_(4)` react quantitive

Last Answer : In the redox reaction . `MnO_(4)^(-)+C^(2)O_(4)^(2-)+H^(+) rarr Mn^(2+)+CO_(2)+H_(2)O` ( ... . 40 mL of 0.1 M oxalate D. 50 mL of 0.25 M oxalate

Description : Assertion :- At constant temp `0^(@)C` and 1 atm, the change `H_(2)O(s)rarr H_(2)O(l)Delta H` and `Delta E` both are zero. Reason :- During isothermal

Last Answer : Assertion :- At constant temp `0^(@)C` and 1 atm, the change `H_(2)O(s)rarr H_(2)O(l) ... Reason is False. D. If both Assertion & Reason are false.

Description : Assertion :- At constant pressure for the change `H_(2)O(s)rarr H_(2)O(g)` work done is nwgative. Reason :- During phase transition work done is alway

Last Answer : Assertion :- At constant pressure for the change `H_(2)O(s)rarr H_(2)O(g)` work done is ... is False. D. If both Assertion & Reason are false.

Description : Given `C(s)+O_(2)(g)rarr CO_(2)(g)+94.2` Kcal `H_(2)(g)+2O_(2)(g)rarr CO_(2)(g)+2H_(2)O(l)+210.8` Kcal The heat of formation of methane in Kcal will b

Last Answer : Given `C(s)+O_(2)(g)rarr CO_(2)(g)+94.2` Kcal `H_(2)(g)+2O_(2)(g)rarr CO_(2)(g)+2H_(2)O(l)+210.8` Kcal ... `-45.9` B. `-47.8` C. `-20.0` D. `-47.3`

Description : Using the following thermochemical data. `C(S)+O_(2)(g)rarr CO_(2)(g), Delta H=94.0` Kcal `H_(2)(g)+1//2O_(2)(g)rarr H_(2)O(l), Delta H=-68.0` Kcal `C

Last Answer : Using the following thermochemical data. `C(S)+O_(2)(g)rarr CO_(2)(g), Delta H=94.0` Kcal `H_(2)(g)+1// ... .0` Kcal C. `-114.0` Kcal D. `+114.0` Kcal

Description : Given that - `2C(s)+2O_(2)(g)rarr 2CO_(2)(g) Delta H = -787 KJ` `H_(2)(g)+ 1//2O_(2)(g)rarr H_(2)O(l) Delta =-286 KJ` `C_(2)H_(2)(g)+(5)/(2)O_(2)(g)ra

Last Answer : Given that - `2C(s)+2O_(2)(g)rarr 2CO_(2)(g) Delta H = -787 KJ` `H_(2)(g)+ 1//2O_(2)(g)rarr H_(2) ... 1802` KJ B. `-1802` KJ C. `-800` KJ D. `+237` KJ

Description : The enthalpy changes at 298 K in successive breaking of `O-H` bonds of water, are `H_(2)O(g) rarr H(g)+OH(g),DeltaH=498kJ mol^(-1)` `OH(g) rarr H(g)+O

Last Answer : The enthalpy changes at 298 K in successive breaking of `O-H` bonds of water, are `H_(2)O(g) rarr H(g)+OH(g), ... KJ mol"^(-1)` D. `463 "KJ mol"^(-1)`

Description : The value of enthalpy change `(DeltaH)` for the reaction `C_(2)H_(5)OH (l)+3O_(2) (g) rarr 2CO_(2) (g) +3H_(2)O (l)` at `27^(@)C` is `-1366.5 kJ mol^(

Last Answer : The value of enthalpy change `(DeltaH)` for the reaction `C_(2)H_(5)OH (l)+3O_(2) (g) rarr 2CO_(2) (g) + ... 1369. kJ` C. `-1364.0 kJ` D. `-1361.5 kJ`

Description : For the process `H_(2)O(l) (1 "bar", 373 K) rarr H_(2)O(g) (1"bar", 373 K)` the correct set of thermodynamic parameters is

Last Answer : For the process `H_(2)O(l) (1 "bar", 373 K) rarr H_(2)O(g) (1"bar", 373 K)` the correct set of ... S = 0` D. `Delta G = -ve, Delta S = +ve`

Description : Which is the best description of the behaviour of bromine in the reaction given below `H_(2)O+Br_(2) rarr HOBr+HBr`

Last Answer : Which is the best description of the behaviour of bromine in the reaction given below `H_(2)O+ ... . Oxidized C. Reduced only D. Proton acceptor only

Description : In the balanced equation - `[Zn+H^(+)+NO_(3)^(-)rarr NH_(4)^(-) rarr NH_(4)^(+) +Zn^(+2)+H_(2)O]` coefficient of `NH_(4)^(+)` is :-

Last Answer : In the balanced equation - `[Zn+H^(+)+NO_(3)^(-)rarr NH_(4)^(-) rarr NH_(4)^(+) +Zn^(+2)+H_(2)O]` coefficient ... (4)^(+)` is :- A. 4 B. 3 C. 2 D. 1

Description : What is the value of n in the following equation : `Cr(OH)_(4)^(-)+OH^(-) rarr CrO_(4)^(2-)+H_(2)O+n e`?

Last Answer : What is the value of n in the following equation : `Cr(OH)_(4)^(-)+OH^(-) rarr CrO_(4)^(2-)+H_(2)O+n e`? A. 3 B. 6 C. 5 D. 2

Description : In the balanced equation `MnO_(4)^(-)+H^(+)+C_(2)O_(4)^(2-)rarr Mn^(2+)+CO_(2)+H_(2)O`, the moles of `CO_(2)` formed are :-

Last Answer : In the balanced equation `MnO_(4)^(-)+H^(+)+C_(2)O_(4)^(2-)rarr Mn^(2+)+CO_(2)+H_(2)O`, the moles of `CO_(2)` formed are :- A. 2 B. 4 C. 5 D. 10

Description : The reaction of `H_(2)S+H_(2)O_(2) rarr S+2H_(2)O` manifests

Last Answer : The reaction of `H_(2)S+H_(2)O_(2) rarr S+2H_(2)O` manifests A. Oxidising action of `H_(2)O_(2)` B. ... H_(2)O_(2)` D. Alkaline nature of `H_(2)O_(2)`

Description : Role of hydrogen peroxide iin the following reaction is respectively. `(i)" " H_(2)O_(2) +O_(3) rarr H_(2)O+ZO_(2)` `(ii)" " H_(2)O_(2)+Ag_(2)Orarr Aa

Last Answer : Role of hydrogen peroxide iin the following reaction is respectively. `(i)" " H_(2)O_(2) +O_(3) rarr H_ ... in II D. oxidising in I as well as in II

Description : In alkaline medium , `KMnO_(4)` reacts as follows `2KMnO_(4)+2KOH rarr 2K_(2)MnO_(4)+H_(2)O+O` Therefore, the equivalent mass of `KMnO_(4)` will be

Last Answer : In alkaline medium , `KMnO_(4)` reacts as follows `2KMnO_(4)+2KOH rarr 2K_(2)MnO_(4)+H_(2)O+O` Therefore, the ... 31.6` B. `63.2` C. `126.4` D. 158

Description : `Ph-overset(O)overset(||)(C)-NH_(2)+Ph-CH_(2)-overset(O)overset(||)(C)-overset(15)(N)H_(2) overset(overset(Theta)(OH)+Br_(2))rarr A+B` Products A and

Last Answer : `Ph-overset(O)overset(||)(C)-NH_(2)+Ph-CH_(2)-overset(O)overset(||)(C)-overset(15)(N)H_(2) overset(overset ... (2)-NH_(2)` D. `Ph-overset(15)(N)H_(2)`

Description : `overset(1.Br_(2)^(-)+KOH, Delta)underset(2.H_(3)O^(o+))rarr` The product of above reaction is:

Last Answer : `overset(1.Br_(2)^(-)+KOH, Delta)underset(2.H_(3)O^(o+))rarr` The product of above reaction is: A. B. C. D.

Description : The product formed in the reaction is: `overset(1.LiAlH_(4))underset(2.H_(2)O)rarr`

Last Answer : The product formed in the reaction is: `overset(1.LiAlH_(4))underset(2.H_(2)O)rarr` A. B. C. `H_(3)C- ... )underset(|)(N)-(CH_(2))_(3) -CH_(2)OH`

Description : Consider the following sequence of reactions: `overset(C CI_(4))underset(Delta)rarr A overset(1.CH_(2)=CH-CH_(2)Br)underset(2.H_(3)O^(o+),Delta)rarrB`

Last Answer : Consider the following sequence of reactions: `overset(C CI_(4))underset(Delta)rarr A overset(1.CH_(2)=CH-CH_(2) ... end product (B) is: A. B. C. D.