In the figure, arcs and drawn by taking vertices A, B and C of an equilateral triangle of side 10 cm to intersect the sides BC, CA and AB at their respective mid-points D, E and F. Find the area of teh shaded region. [use π = 3.14] -Maths 10th

1 Answer

Answer :

Step-by-step explanation: We have been provided that, Triangle ABC is an Equilateral triangle. Side of triangle is = 10 cm The arcs are drawn from each vertices of the triangle. We get three sectors intersecting at D, E and F on the sides BC, CA and AB respectively. Now, AB = BC = CD = 10 cm. The area of sector AEF = Area of sector BDF = Area of sector CDE So, Area of sector AEF is given by, Therefore, the area of the all the shaded region that is the area of all the sectors is given by, Now, Area of Equilateral triangle is, Therefore, the area of the remaining portion is, Remaining area = Area of triangle ABC - Area of all the sectors 39.25cm square

Related questions

Description : In the figure, find teh perimeter of the shaded region where. ADC, AEB and BFC are semi-circles on diameters AC, AB and BC respectively. -Maths 10th

Last Answer : Given: Diameter of semicircle AEB= 2.8 cm RADIUS OF SEMICIRCLE(AEB)= 2.8/2= 1.4 cm Diameter of semicircle BFC=1.4 cm RADIUS OF SEMICIRCLE(BFC)= 1.4/2= 0.7 cm Diameter of semicircle ADC= 2.8+1.4 = ... ; .6 = 13.2 cm Hence, the perimeter of the shaded region is 13.2 cm HOPE THIS WILL HELP YOU...

Description : In the fig, D, E and F are, respectively the mid-points of sides BC, CA and AB of an equilateral triangle ABC. -Maths 9th

Last Answer : Since line segment joining the mid-points of two sides of a triangle is half of the third side. Therefore, D and E are mid-points of BC and AC respectively. ⇒ DE = 1 / 2 AB --- (i) E and F are the mid - ... CA ⇒ DE = EF = FD [using (i) , (ii) , (iii) ] Hence, DEF is an equilateral triangle .

Description : In the fig, D, E and F are, respectively the mid-points of sides BC, CA and AB of an equilateral triangle ABC. -Maths 9th

Last Answer : Since line segment joining the mid-points of two sides of a triangle is half of the third side. Therefore, D and E are mid-points of BC and AC respectively. ⇒ DE = 1 / 2 AB --- (i) E and F are the mid - ... CA ⇒ DE = EF = FD [using (i) , (ii) , (iii) ] Hence, DEF is an equilateral triangle .

Description : D,E and F are the mid-points of the sides BC,CA and AB,respectively of an equilateral triangle ABC.Show that △DEF is also an euilateral triangle -Maths 9th

Last Answer : Solution :-

Description : D, E and F are respectively the mid-points of the sides AB, BC and CA of a triangle ABC. -Maths 9th

Last Answer : Since the segment joining the mid points of any two sides of a triangle is half the third side and parallel to it. DE = 1 / 2 AC ⇒ DE = AF = CF EF = 1 / 2 AB ⇒ EF = AD = BD DF = 1 ... △DEF ≅ △AFD Thus, △DEF ≅ △CFE ≅ △BDE ≅ △AFD Hence, △ABC is divided into four congruent triangles.

Description : D, E and F are respectively the mid-points of the sides AB, BC and CA of a triangle ABC. -Maths 9th

Last Answer : Since the segment joining the mid points of any two sides of a triangle is half the third side and parallel to it. DE = 1 / 2 AC ⇒ DE = AF = CF EF = 1 / 2 AB ⇒ EF = AD = BD DF = 1 ... △DEF ≅ △AFD Thus, △DEF ≅ △CFE ≅ △BDE ≅ △AFD Hence, △ABC is divided into four congruent triangles.

Description : If P, Q and R are the mid-points of the sides, BC, CA and AB of a triangle and AD is the perpendicular from A on BC, then prove that P, Q, R and D are concyclic. -Maths 9th

Last Answer : According to question prove that P, Q, R and D are concyclic.

Description : If P, Q and R are the mid-points of the sides, BC, CA and AB of a triangle and AD is the perpendicular from A on BC, then prove that P, Q, R and D are concyclic. -Maths 9th

Last Answer : According to question prove that P, Q, R and D are concyclic.

Description : In the given figure, ABC is an equilateral triangle of side length 30 cm. XY is parallel to BC, XP is parallel to AC and YQ is parallel to AB. -Maths 9th

Last Answer : answer:

Description : One side of an equilateral triangle is 24 cm. The mid-points of its sides are joined to form another triangle whose mid-points -Maths 9th

Last Answer : Perimeter of the largest (outermost) equilateral triangle = 3 24 = 72 cm. Now, the perimeter of the triangle formed by joining the midpoints of a given triangle will be half the perimeter of the original triangle. ∴ Required sum = 72 + ... -rac{1}{2}}\) = \(rac{72}{rac{1}{2}}\) = 72 x 2 = 144 cm.

Description : In the given figure, AB is the diameter where AP = 12 cm and PB = 16 cm. If the value of π is taken 3, what is the perimeter of the shaded region? (a) 58 cm (b) 116 cm (c) 29 cm (d) 156 cm

Last Answer : (a) 58 cm

Description : If the roots ff the equation (c2 – ab)x2 – 2(a2 – bc)x + b2 – ac = 0 are equal, then prove that either a = 0 or a3 + b3 + c3 = 3abc -Maths 10th

Last Answer : (c2 – ab) x2 + 2(bc - a2 ) x+ (b2 – ac) = 0 Comparing with Ax2 + Bx + C = 0 A = (c2 – ab), B = 2(bc - a2 ) and C = b2 – ac According to the question, B2 - 4AC = 0 Put the values in the above equation we get 4a(a3 + b3 + c3 -3abc) = 0 hence, a = 0 or a3 + b3 + c3 = 3ab

Description : E and F are respectively the mid-points of the non-parallel sides AD and BC of a trapezium ABCD. Prove that EF||AB and EF = 1/2 (AB +CD). -Maths 9th

Last Answer : Solution :-

Description : Let ABC be a triangle. Let D, E, F be points respectively on segments BC, CA, AB such that AD, BE and CF concur at point K. -Maths 9th

Last Answer : answer:

Description : Each side of an equilateral triand 12 is \( 24 cm \) the mid - point of its sides are joined to form another tranpla this brress is doins centinuously infinite46. The perimeter of 7 th triangle is \( ( \) in \( cm ) \)a) \( \ ... of the 5th triangle is (in \( cm \) )a) 6b) \( 1.5 \)c) \( 0.75 \)d) 3

Last Answer : Each side of an equilateral triand 12 is \( 24 cm \) the mid - point of its sides are joined to form another tranpla ... ( 1.5 \) c) \( 0.75 \) d) 3

Description : Side AC of a right triangle ABC is divided into 8 equal parts. Seven line segments parallel to BC are drawn to AB from the points of division. -Maths 9th

Last Answer : answer:

Description : From a point O in the interior of a DABC if perpendiculars OD, OE and OF are drawn to the sides BC, CA and AB respectively, then which of the -Maths 9th

Last Answer : (i) In Δ O C E ,D C 2 = D E 2 + E C 2 Δ O B D , D B 2 = O D 2 + B D 2 Δ O A F , O A 2 = O F 2 + A F 2 Adding we get O A 2 + O B 2 + O C 2 = O F 2 + O D 2 + O F 2 + E C 2 + B D 2 + A F 2 A F 2 + B D 2 + C E 2 = O A

Description : Let ABC be a triangle of area 16 cm^2 . XY is drawn parallel to BC dividing AB in the ratio 3 : 5. If BY is joined, then the area of triangle BXY is -Maths 9th

Last Answer : answer:

Description : 4. ABCD is a trapezium in which AB || DC, BD is a diagonal and E is the mid-point of AD. A line is drawn through E parallel to AB intersecting BC at F (see Fig. 8.30). Show that F is the mid-point of BC. -Maths 9th

Last Answer : . Solution: Given that, ABCD is a trapezium in which AB || DC, BD is a diagonal and E is the mid-point of AD. To prove, F is the mid-point of BC. Proof, BD intersected EF at G. In ΔBAD, E is the ... point of BD and also GF || AB || DC. Thus, F is the mid point of BC (Converse of mid point theorem)

Description : In Fig. 8.53,ABCD is a parallelogram and E is the mid - point of AD. A line through D, drawn parallel to EB, meets AB produced at F and BC at L.Prove that (i) AF = 2DC (ii) DF = 2DL -Maths 9th

Last Answer : Given, E is mid point of AD Also EB∥DF ⇒ B is mid point of AF [mid--point theorem] so, AF=2AB (1) Since, ABCD is a parallelogram, CD=AB ⇒AF=2CD AD∥BC⇒LB∥AD In ΔFDA ⇒LB∥AD ⇒LDLF​=ABFB​=1 from (1) ⇒LF=LD so, DF=2DL

Description : ABCD is a trapezium with parallel sides AB = a cm and DC = b cm . E and F are the mid - points of the non - parallel sides . -Maths 9th

Last Answer : Clearly, EF = AB + DC / 2 = a + b / 2 Let h be the height , then ar(Trap. ABFE) : ar(Trap. EFCD) ⇒ 1/2 [a + (a+b / 2)] × h : 1/2 [b + (a+b / 2)] × h ⇒ 2a + a + b / 2 : 2b + a + b / 2 ⇒ 3a + b : 3b + a

Description : ABCD is a trapezium with parallel sides AB = a cm and DC = b cm . E and F are the mid - points of the non - parallel sides . -Maths 9th

Last Answer : Clearly, EF = AB + DC / 2 = a + b / 2 Let h be the height , then ar(Trap. ABFE) : ar(Trap. EFCD) ⇒ 1/2 [a + (a+b / 2)] × h : 1/2 [b + (a+b / 2)] × h ⇒ 2a + a + b / 2 : 2b + a + b / 2 ⇒ 3a + b : 3b + a

Description : D and E are respectively the points on the sides AB and AC of a triangle ABC such that AD = 2 cm, BD = 3 cm, BC = 7.5 cm and DE || BC. Then, length of DE (in cm) is (a) 2.5 (b) 3 (c) 5 (d) 6

Last Answer : (b) 3

Description : If a, b, c are the sides of a triangle and a^2 + b^2 + c^2 = bc + ca + ab, then the triangle is: -Maths 9th

Last Answer : answer:

Description : ABCD is a trapezium in which AB || DC and AD = BC. If P, Q, R and S be respectively the mid-points of BA, BD, CD and CA, then PQRS is a -Maths 9th

Last Answer : Here is your First of all we will draw a quadrilateral ABCD with AD = BC and join AC, BD, P,Q,R,S are the mid points of AB, AC, CD and BD respectively. In the triangle ABC, P and Q are mid points of AB and AC respectively. All sides are equal so PQRS is a Rhombus.

Description : In triangle ABC, D and E are mid-points of the sides BC and AC respectively. Find the length of DE. Prove that DE = 1/2AB. -Maths 9th

Last Answer : First Find the points D and E by midpoint formula. (x₂+x₁/2 , y₂+y₁/2) For DE=1/2AB In ΔsCED and CAB ∠ECD=∠ACB and the ratio of the side containing the angle is same i.e, CD=1/2BC ⇒CD/BC=1/2 EC=1/2AC ⇒EC/AC=1/2 ∴,ΔCED~ΔCAB hence the ratio of their corresponding sides will be equal, DE=1/2AB

Description : 3. ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus. -Maths 9th

Last Answer : Solution: Given in the question, ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Construction, Join AC and BD. To Prove, PQRS is a rhombus. Proof: In ΔABC P and Q ... (ii), (iii), (iv) and (v), PQ = QR = SR = PS So, PQRS is a rhombus. Hence Proved

Description : 2. ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle. -Maths 9th

Last Answer : Solution: Given in the question, ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. To Prove, PQRS is a rectangle. Construction, Join AC and BD. Proof: In ΔDRS and ... , In PQRS, RS = PQ and RQ = SP from (i) and (ii) ∠Q = 90° , PQRS is a rectangle.

Description : ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA (see Fig 8.29). AC is a diagonal. Show that: (i) SR || AC and SR = 1/2 AC (ii) PQ = SR (iii) PQRS is a parallelogram. -Maths 9th

Last Answer : . Solution: (i) In ΔDAC, R is the mid point of DC and S is the mid point of DA. Thus by mid point theorem, SR || AC and SR = ½ AC (ii) In ΔBAC, P is the mid point of AB and Q is the mid point of BC. ... ----- from question (ii) ⇒ SR || PQ - from (i) and (ii) also, PQ = SR , PQRS is a parallelogram.

Description : P, Q, R and S are respectively the mid-points of the sides AB, BC, CD and DA of a quadrilateral ABCD in which AC = BD. -Maths 9th

Last Answer : Given In a quadrilateral ABCD, P, Q, R and S are the mid-points of sides AB, BC, CD and DA, respectively. Also, AC = BD To prove PQRS is a rhombus.

Description : P, Q, R and S are respectively the mid-points of sides AB, BC, CD and DA of quadrilateral ABCD in which AC = BD and AC ⊥ BD. Prove that PQRS is a square. -Maths 9th

Last Answer : Given In quadrilateral ABCD, P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively. Also, AC = BD and AC ⊥ BD. To prove PQRS is a square. Proof Now, in ΔADC, S and R are the mid-points of the sides AD and DC respectively, then by mid-point theorem,

Description : P, Q, R and S are respectively the mid-points of the sides AB, BC, CD and DA of a quadrilateral ABCD in which AC = BD. -Maths 9th

Last Answer : Given In a quadrilateral ABCD, P, Q, R and S are the mid-points of sides AB, BC, CD and DA, respectively. Also, AC = BD To prove PQRS is a rhombus.

Description : P, Q, R and S are respectively the mid-points of sides AB, BC, CD and DA of quadrilateral ABCD in which AC = BD and AC ⊥ BD. Prove that PQRS is a square. -Maths 9th

Last Answer : Given In quadrilateral ABCD, P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively. Also, AC = BD and AC ⊥ BD. To prove PQRS is a square. Proof Now, in ΔADC, S and R are the mid-points of the sides AD and DC respectively, then by mid-point theorem,

Description : If ABCD is a rectangle and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively, then quadrilateral PQRS is a rhombus. -Maths 9th

Last Answer : Here, we are joining A and C. In ΔABC P is the mid point of AB Q is the mid point of BC PQ∣∣AC [Line segments joining the mid points of two sides of a triangle is parallel to AC(third side) and ... RS=PS=RQ[All sides are equal] ∴ PQRS is a parallelogram with all sides equal ∴ So PQRS is a rhombus.

Description : ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that (i) D is the mid-point of AC (ii) MD ⊥ AC (iii) CM = MA = ½ AB -Maths 9th

Last Answer : Solution: (i) In ΔACB, M is the midpoint of AB and MD || BC , D is the midpoint of AC (Converse of mid point theorem) (ii) ∠ACB = ∠ADM (Corresponding angles) also, ∠ACB = 90° , ∠ADM = 90° and MD ⊥ AC (iii ... SAS congruency] AM = CM [CPCT] also, AM = ½ AB (M is midpoint of AB) Hence, CM = MA = ½ AB

Description : Let O be any point inside a triangle ABC. Let L, M and N be the points on AB, BC and CA respectively, -Maths 9th

Last Answer : answer:

Description : The mid-point of the sides of a triangle along with any of the vertices as the fourth point make a parallelogram of area equal to -Maths 9th

Last Answer : Solution of this question

Description : The mid-point of the sides of a triangle along with any of the vertices as the fourth point make a parallelogram of area equal to -Maths 9th

Last Answer : Solution of this question

Description : Figure abc is rectangle. segment AB is 6cm long , segment BC is 8 cm long , and segment AC is 10 cm long. what is the area of triangle abc?

Last Answer : 28

Description : In figure X and Y are the mid-points of AC and AB respectively, QP || BC and CYQ and BXP are straight lines. -Maths 9th

Last Answer : Given X and Y are the mid-points of AC and AB respectively. Also, QP|| BC and CYQ, BXP are straight lines. To prove ar (ΔABP) = ar (ΔACQ) Proof Since, X and Y are the mid-points of AC and AB respectively. So, ... ar (ΔBYX) + ar (XYAP) = ar (ΔCXY) + ar (YXAQ) ⇒ ar (ΔABP) = ar (ΔACQ) Hence proved.

Description : In figure X and Y are the mid-points of AC and AB respectively, QP || BC and CYQ and BXP are straight lines. -Maths 9th

Last Answer : Given X and Y are the mid-points of AC and AB respectively. Also, QP|| BC and CYQ, BXP are straight lines. To prove ar (ΔABP) = ar (ΔACQ) Proof Since, X and Y are the mid-points of AC and AB respectively. So, ... ar (ΔBYX) + ar (XYAP) = ar (ΔCXY) + ar (YXAQ) ⇒ ar (ΔABP) = ar (ΔACQ) Hence proved.

Description : E and F are respectively the mid-points of the non-parallel sides AD and BC of a trapezium ABCD. -Maths 9th

Last Answer : According to question the mid-points of the non-parallel sides AD and BC of a trapezium ABCD.

Description : E and F are respectively the mid-points of the non-parallel sides AD and BC of a trapezium ABCD. -Maths 9th

Last Answer : According to question the mid-points of the non-parallel sides AD and BC of a trapezium ABCD.

Description : A chord of a circle of radius 20 cm subtends an angle of 90° at the centre. Find the area of the corresponding major segment of the circle. -Maths 10th

Last Answer : Area of the minor segment = { pi × 90 /360 - sin 45 × cos 45 } × r × r ={ 3.14 ×1/4 - 1÷√2 ×1÷√2 } × 20 × 20 = { 3.14 ... Area of major segment = area of circle - area of minor segment = 1256 - 114 = 1142 HOPE IT HELPS YOU

Description : ABCD is a trapezium with AB and CD as parallel sides. The diagonals intersect at O. The area of the triangle ABO is p and that of triangle CDO is q. -Maths 9th

Last Answer : answer:

Description : ABCD is a trapezium in which side AB is parallel to side DC and E is the mid-point of side AD. If F is a point on side BC such that segment -Maths 9th

Last Answer : answer:

Description : A calf is tied with a rope of length 6 m at the corner of a square grassy lawn of side 20 m. If the length of the rope is increased by 5.5 m, find the increase in area of the grassy lawn in which the calf can graze. -Maths 10th

Last Answer : Given, The initial length of the rope = 6 m Then the rope is said to be increased by 5.5m So, the increased length of the rope = (6 + 5.5) = 11.5 m We know that, the corner of the lawn is a quadrant of a circle. Thus ... – 62) = 1/4 x 22/7 (132.25 – 36) = 1/4 x 22/7 x 96.25 = 75.625 cm2

Description : In ΔABC and ΔDEF, AB = DE, AB || DE, BC = EF and BC || EF. Vertices A, B and C are joined to vertices D, E and F respectively (see Fig. 8.22). Show that (i) quadrilateral ABED is a parallelogram ( ... CF and AD = CF (iv) quadrilateral ACFD is a parallelogram (v) AC = DF (vi) ΔABC ≅ ΔDEF. -Maths 9th

Last Answer : . Solution: (i) AB = DE and AB || DE (Given) Two opposite sides of a quadrilateral are equal and parallel to each other. Thus, quadrilateral ABED is a parallelogram (ii) Again BC = EF and BC || EF ... (Given) BC = EF (Given) AC = DF (Opposite sides of a parallelogram) , ΔABC ≅ ΔDEF [SSS congruency]

Description : Find the area of an equilateral triangle inscribed in a circle circumscribed by a square made by joining the mid-points -Maths 9th

Last Answer : (d) \(rac{3\sqrt3a^2}{32}\)Let AB = a be the side of the outermost square.Then AG = AH = \(rac{a}{2}\)⇒ GH = \(\sqrt{rac{a^2}{4}+rac{a^2}{4}}\) = \(rac{a}{\sqrt2}\)∴ Diameter of circle = \(rac{a} ... rac{\sqrt3}{2}\) = \(rac{\sqrt3a^2}{32}\)∴ Area of ΔPQR = 3 (Area of ΔPOQ) = \(rac{\sqrt3a^2}{32}\)

Description : 5. In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (see Fig. 8.31). Show that the line segments AF and EC trisect the diagonal BD. -Maths 9th

Last Answer : . Solution: Given that, ABCD is a parallelogram. E and F are the mid-points of sides AB and CD respectively. To show, AF and EC trisect the diagonal BD. Proof, ABCD is a parallelogram , AB || CD also, ... (i), DP = PQ = BQ Hence, the line segments AF and EC trisect the diagonal BD. Hence Proved.