The line segment joining P(5, –2) and Q(9, 6) is divided in the ratio 3 : 1 by a point A -Maths 9th

1 Answer

Answer :

Comparing y = 5\(x\) –7 with y = m\(x\) + c, the slope of given line = m = 5 ∴ Equation of a line parallel to y = 5\(x\) – 7 having y-intercept = –1 is y = 5\(x\) – 1.

Related questions

Description : Points P, Q, R and S divide a line segment joining A (2, 6) and B (7, -4) in five equal parts. Find the coordinates of P and R. -Maths 9th

Last Answer : this is the ans hope its clear

Description : Points P (5, -3) is one of the two points of trisection of the line segment joining points A(7, -2) and B(1, -5) near to A. find the coordinates of the other point of trisection. -Maths 9th

Last Answer : answer:

Description : Find the point of trisection of the line segment joining the points (1, 2) and (11, 9) ? -Maths 9th

Last Answer : Let P divide AB in the ratio k : 1. Then, co-ordinates of P are \(\bigg(rac{7k+4}{k+1},rac{7k+4}{k+1}\bigg)\)But P ≡ (-1, -1)∴ \(rac{7k+4}{k+1}\) = -1 ⇒ 7k + 4 = - k - 1 ⇒ 8k = - ... , it means that the division is external. ∴ AB is divided by P externally in the ratio \(rac{5}{8}\) : 1, i.e. 5 : 8.

Description : In what ratio is the line joining the points A(4, 4) and B(7, 7) divided by P(–1, –1)? -Maths 9th

Last Answer : Let ABCD be the given square and let A ≡ (3, 4) and C ≡ (1, -1). Also let B ≡ (x, y). ABCD being a square,AB = BC ⇒ AB2 = BC2, ∠ABC = 90º⇒ \(\big(\sqrt{(x-3)^2+(y-4)^2}\big)^2\) = \(\big(\sqrt{(x-1)^2+(y+1 ... \(rac{9}{2}\),\(rac{1}{2}\)\(\bigg)\)and \(\bigg(\)\(-rac{1}{2}\), \(rac{5}{2}\)\(\bigg)\)

Description : Two congruent circles intersect each other at point A and B.Through A any line segment PAQ is drawn so that P,Q lie on the two circles.Prove that BP = BQ. -Maths 9th

Last Answer : Solution :- Let, O and O' be the centres of two congruent circles. As, AB is the common chord of these circles. ∴ ACB = ADB As congruent arcs subtent equal angles at the centre. ∠AOB = ∠AO'B ⇒ 1/2∠AOB = 1/2∠AO'B ⇒ ∠BPA = ∠BQA ⇒ BP = BQ (Sides opposite to equal angles)

Description : In what ratio is the line joining the points (2, –3) and (5, 6) divided by the x-axis. -Maths 9th

Last Answer : (b) (2, 1) (- 2, 1)Let PQRS be the required square and P(0, -1) and R(0, 3) be its two opposite vertices. Length of diagonal PR = \(\sqrt{(0-0)^2+(3+1)^2}\) = \(\sqrt{16}\) = 4∴ Length of each side = \( ... + 4 = 8 ⇒ a2 = 4 ⇒ a = 2. ∴ The other two vertices of the square are (+2, 1) and (-2, 1).

Description : The line segment joining the mid-points of any two sides of a triangle is parallel to the third side and equal to half of it. -Maths 9th

Last Answer : Given = A △ABC in which D and E are the mid-points of side AB and AC respectively. DE is joined . To Prove : DE || BC and DE = 1 / 2 BC. Const. : Produce the line segment DE to F , such that DE = ... of ||gm are equal and parallel] Also, DE = EF [by construction] Hence, DE || BC and DE = 1 / 2 BC

Description : If a line segment joining mid-points of two chords of a circle passes through the centre of the circle, prove that the two chords are parallel. -Maths 9th

Last Answer : According to question prove that the two chords are parallel.

Description : If a line segment joining mid-points of two chords of a circle passes through the centre of the circle, prove that the two chords are parallel. -Maths 9th

Last Answer : Given : E and F are mid points of 2 chords AB and CD respectively. Line EF passes through centre. To prove : AB||CD ∠ OFC = ∠ OEA = 90° as line drawn through the centre to bisect the ... EF as traversal for lines AB and CD as alternate interior angles on same side are equal. Therefore, AB || CD

Description : The line segment joining the mid-points of any two sides of a triangle is parallel to the third side and equal to half of it. -Maths 9th

Last Answer : Given = A △ABC in which D and E are the mid-points of side AB and AC respectively. DE is joined . To Prove : DE || BC and DE = 1 / 2 BC. Const. : Produce the line segment DE to F , such that DE = ... of ||gm are equal and parallel] Also, DE = EF [by construction] Hence, DE || BC and DE = 1 / 2 BC

Description : If a line segment joining mid-points of two chords of a circle passes through the centre of the circle, prove that the two chords are parallel. -Maths 9th

Last Answer : According to question prove that the two chords are parallel.

Description : If a line segment joining mid-points of two chords of a circle passes through the centre of the circle, prove that the two chords are parallel. -Maths 9th

Last Answer : Given : E and F are mid points of 2 chords AB and CD respectively. Line EF passes through centre. To prove : AB||CD ∠ OFC = ∠ OEA = 90° as line drawn through the centre to bisect the ... EF as traversal for lines AB and CD as alternate interior angles on same side are equal. Therefore, AB || CD

Description : Prove that the line segment joining the mid-points of the diagonals of a trapezium is parallel to the parallel sides and equal to half of their difference. -Maths 9th

Last Answer : In a parallelogram ABCD, the bisector of ∠ A also bisects BC at X.Prove that AD = 2AB.

Description : The mid-point of the line joining the points (–10, 8) and (–6, 12) divides the line joining the points (4, –2) and (– 2, 4) in the ratio -Maths 9th

Last Answer : (d) 2 : 1 externallyThe mid-point of the line joining the points (-10, 8) and (- 6, 12) is\(\bigg(rac{-10+(-6)}{2},rac{8+12}{2}\bigg)\), i.e., (-8, 10).Let (-8, 10) divide the join of (4 ... 6k = 12 ⇒ k = -2 Since the value of k is negative, it is a case of external division and the ratio is 2 : 1.

Description : Draw a line segment QR = 5 cm. Construct perpendiculars at point Q and R to it. -Maths 9th

Last Answer : 1.Draw a line segment QR = 5 cm. 2.With Q as centre, construct an angle of 90° and let this line through Q is QX. 3. With R as centre, construct an angle of 90° and let this line through R is RY. Yes, the perpendicular lines QX and- RY are parallel.

Description : Draw a line segment QR = 5 cm. Construct perpendiculars at point Q and R to it. -Maths 9th

Last Answer : 1.Draw a line segment QR = 5 cm. 2.With Q as centre, construct an angle of 90° and let this line through Q is QX. 3. With R as centre, construct an angle of 90° and let this line through R is RY. Yes, the perpendicular lines QX and- RY are parallel.

Description : Find the ratio in which the x-axes divides the line joining the points (–2, 5) and (1, –9) ? -Maths 9th

Last Answer : Let the co-ordinates of the point of internal division A be (x, y). Then,\(x\) = \(rac{2 imes(-7)+3 imes8}{2+3}\) = \(rac{-14+24}{5}\) = \(rac{10}{5}\) = 2y = \(rac{2 imes4+3 imes9}{2+3}\) = \(rac{8+27}{5}\) = \(rac{35}{5}\) = 7∴ Co-ordinates of the point for internal division are (2, 7).

Description : ABCD is a square. P, Q, R, S are the mid-points of AB, BC, CD and DA respectively. By joining AR, BS, CP, DQ, we get a quadrilateral which is a -Maths 9th

Last Answer : According to the given statement, the figure will be a shown alongside; using mid-point theorem: In △ABC,PQ∥AC and PQ=21 AC .......(1) In △ADC,SR∥AC and SR=21 AC .... ... are perpendicular to each other) ∴PQ⊥QR(angle between two lines = angle between their parallels) Hence PQRS is a rectangle.

Description : The ratio in which P ( , B(2,-5) is : (a) 1:5 (b) 5:1 ) divides the line segment joining the points A ( , (c) 1:4 ) and (d) 4:1

Last Answer : (a) 1:5

Description : The point which divides the line segment joining the points (7, –6) and (3, 4) in the ratio 1 : 2 lies in the: (a) I quadrant (b) II quadrant (c) III quadrant (d) IV quadrant

Last Answer : (d) IV quadrant

Description : A farmer was having a field in the form of a parallelogram PQRS. She took any point A on RS and joined it to points P and Q. In how many parts the field is divided ? -Maths 9th

Last Answer : From the adjoining figure, we have The field PQRS is divided into three parts △PAQ, △APS and △AQR. Now, △PAQ and ||gm PQRS are on the same base and lie between the same parallels. ∴ ar(△PAQ) = 1 / 2 ar(||gm ... , she can sow wheat in △APS and △AQR, pulses in △PAQ or vice - versa .

Description : A farmer was having a field in the form of a parallelogram PQRS. She took any point A on RS and joined it to points P and Q. In how many parts the field is divided ? -Maths 9th

Last Answer : From the adjoining figure, we have The field PQRS is divided into three parts △PAQ, △APS and △AQR. Now, △PAQ and ||gm PQRS are on the same base and lie between the same parallels. ∴ ar(△PAQ) = 1 / 2 ar(||gm ... , she can sow wheat in △APS and △AQR, pulses in △PAQ or vice - versa .

Description : The point (-1,2) divides the line segment joining the points A(2,5) and B(x,y) in the ratio 3:4, then the value of x2 + y2 is : (a) 27 (b) 28 (c) 29 (d) 30

Last Answer : (c) 29

Description : When (x^3 – 2x^2 + px – q) is divided by (x^2 – 2x – 3), the remainder is (x – 6), What are the values of p and q respectively ? -Maths 9th

Last Answer : answer:

Description : The ratio in which the line 3x + 4y = 7 divides the line joining the points (–2, 1) and (1, 2) is -Maths 9th

Last Answer : (a) (–24, –2)Co-ordinates of the point of external division are\(\bigg(rac{m_1\,x_2-m_2\,x_1}{m_1-m_2},rac{m_1y_2-m_2y_1}{m_1-m_2}\bigg)\), i.e.,∴ Required point = \(\bigg(rac{3 imes-6-2 imes4}{3-2},rac{3 imes2-2 imes4}{3-2}\bigg)\)= \(\big(rac{-24}{1},rac{-2}{1}\big)\), i.e., (–24, –2).

Description : A circle has radius √2 cm. It is divided into two segments by a chord of length 2cm.Prove that the angle subtended by the chord at a point in major segment is 45 degree . -Maths 9th

Last Answer : Given radius =2 cm Therefore AO=2 cm Let OD be the perpendicular from O on AB And AB =2cm Therefore AD=1cm (perpendicular from the centre bisects the chord) Now in triangle AOD, AO=2 cm ... by a chord at the centre is double of the angle made by the chord at any poin on the circumference)

Description : P is the mid - point of side AB of a parallelogram ABCD. A line through B parallel to PD meets DC at Q and AD produced at R (see figure). -Maths 9th

Last Answer : (i) In △ARB,P is the mid point of AB and PD || BR. ∴ D is a mid - point of AR [converse of mid - point theorem] ∴ AR = 2AD But BC = AD [opp sides of ||gm ABCD] Thus, AR = 2BC (ii) ∴ ABCD is a ... a mid - point of AR and DQ || AB ∴ Q is a mid point of BR [converse of mid - point theorem] ⇒ BR = 2BQ

Description : The side AB of a parallelogram ABCD is produced to any point P. A line through A and parallel to CP meets CB produced at Q, then parallelogram PBQR is completed (see figure). -Maths 9th

Last Answer : Join AC and QP, also it is given that AQ || CP ∴ △ACQ and △APQ are on the same base AQ and lie between the same parallels AQ || CP. ∴ ar(△ACQ) = ar(△APQ) or ar(△ABC) + ar(△ABQ) = ar(△BPQ) + ar(△ABQ) or ar(△ABC) = ar( △BPQ) or 1/2 ar(||gm ABCD) = 1/2 ar(||gm PBQR) or ar(||gm ABCD) = ar(||gm PBQR)

Description : In trapezium ABCD, AB || DC and L is the mid-point of BC. Through L, a line PQ || AD has been drawn which meets AB in P and DC produced in Q. -Maths 9th

Last Answer : According to question prove that ar (ABCD) = ar (APQD).

Description : P is the mid - point of side AB of a parallelogram ABCD. A line through B parallel to PD meets DC at Q and AD produced at R (see figure). -Maths 9th

Last Answer : (i) In △ARB,P is the mid point of AB and PD || BR. ∴ D is a mid - point of AR [converse of mid - point theorem] ∴ AR = 2AD But BC = AD [opp sides of ||gm ABCD] Thus, AR = 2BC (ii) ∴ ABCD is a ... a mid - point of AR and DQ || AB ∴ Q is a mid point of BR [converse of mid - point theorem] ⇒ BR = 2BQ

Description : The side AB of a parallelogram ABCD is produced to any point P. A line through A and parallel to CP meets CB produced at Q, then parallelogram PBQR is completed (see figure). -Maths 9th

Last Answer : Join AC and QP, also it is given that AQ || CP ∴ △ACQ and △APQ are on the same base AQ and lie between the same parallels AQ || CP. ∴ ar(△ACQ) = ar(△APQ) or ar(△ABC) + ar(△ABQ) = ar(△BPQ) + ar(△ABQ) or ar(△ABC) = ar( △BPQ) or 1/2 ar(||gm ABCD) = 1/2 ar(||gm PBQR) or ar(||gm ABCD) = ar(||gm PBQR)

Description : In trapezium ABCD, AB || DC and L is the mid-point of BC. Through L, a line PQ || AD has been drawn which meets AB in P and DC produced in Q. -Maths 9th

Last Answer : According to question prove that ar (ABCD) = ar (APQD).

Description : If (–5, 4) divides the line segment between the co-ordinate axes in the ratio 1 : 2, then what is its equation ? -Maths 9th

Last Answer : (d) x = yThe equations of the given lines are: 4x + 3y = 12 ...(i) 3x + 4y = 12 ...(ii) Solving the simultaneous equations (i) and (ii), we get\(x\) = \(rac{12}{7}\), y = \(rac{12}{7}\)∴ Point of the ... )isy - 0 = \(\bigg(rac{rac{12}{7}-0}{rac{12}{7}-0}\bigg)\) (x - 0), i.e., y = x.

Description : What is the equation of the line joining the origin with the point of intersection of the lines 4x + 3y = 12 and 3x + 4y = 12 ? -Maths 9th

Last Answer : (b) (5, 6)Let the foot of the perpendicular be M(x1, y1) Slope of line AB, i.e., y = -x + 11 = -1 Slope of line PM = \(rac{y_1-3}{x_1-2}\)Now, PM ⊥ AB⇒ \(\bigg(rac{y_1-3}{x_1-2}\bigg)\) x - ... get 2x1 = 10 ⇒ x1 = 5 Putting x1 in (ii), we get y1 = 6. ∴ Required foot of the perpendicular M is (5, 6).

Description : Points P,Q,R(in this order) divide the line joining the points A(-2,2) and B(2,8) into four equal parts. The coordinates of the point Q are: (a) (-1,7/2) (b) (1,13/2) (c) (0,5) (d) (5,1/2)

Last Answer : (c) (0,5)

Description : 6. Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other. -Maths 9th

Last Answer : Solution: Let ABCD be a quadrilateral and P, Q, R and S are the mid points of AB, BC, CD and DA respectively. Now, In ΔACD, R and S are the mid points of CD and DA respectively. , ... , PQRS is parallelogram. PR and QS are the diagonals of the parallelogram PQRS. So, they will bisect each other.

Description : Draw a circle with centre at point O and radius 5 cm. Draw its chord AB, draw the perpendicular bisector of line segment AB. Does it pass through the centre of the circle? -Maths 9th

Last Answer : STEP1: Draw a circle with centre at point O and radius 5 cm. STEP2: Draw its cord AB. STEP3: With centre A as centre and radius more than half of AB, draw two arcs, one on each side ... is perpendicular bisector of AB which is chord of circle, Hence, it passes through the centre of the circle.

Description : In given figure l || m and M is the mid-point of a line segment AB. -Maths 9th

Last Answer : Solution of this question

Description : In given figure l || m and M is the mid-point of a line segment AB. -Maths 9th

Last Answer : Solution of this question

Description : Prove that every line segment has one and only one mid-point. -Maths 9th

Last Answer : Solution :-

Description : In Fig. 9.30, ABCDE is any pentagon. BP drawn parallel to AC meets DC produced at P and EQ drawn parallel to AD meets CD produced at Q. Prove that ar (ABCDE) = ar(APQ). -Maths 9th

Last Answer : hope its clearhope its clear

Description : How do I find the midpoint of the line segment joining the points (-1,3) and (-9,8)?

Last Answer : 85

Description : The line x – 4y = 6 is the perpendicular bisector of the segment AB and the co-ordinates of B are (1, 3). Find the co-ordinates of A. -Maths 9th

Last Answer : Co-ordinates of A are \(\bigg(rac{3 imes9+1 imes5}{3+1},rac{3 imes6+1 imes-2}{3+1}\bigg)\) = \(\bigg(rac{32}{4},rac{16}{4}\bigg)\), i.e. (8, 4)Now, \(x\) - 3y + 4 = 0 ⇒ -3y = -\(x\) - 4 ⇒ y = \(rac{x}{3}+rac{4} ... 8) [Using, y - y1 = m (x - x1)]⇒ 3y - 12 = \(x\) - 8 ⇒ 3y - \(x\) = 4.

Description : Draw a line segment of length 8.6 cm. Bisect it and measure the length of each part. -Maths 9th

Last Answer : Draw a line segment AB of length 8.6 cm. With A as centre and radius more than half of AB, draw arcs on both sides of AB. With the same radius and B as centre, draw arcs on the both sides of AB, ... line segment from E to F intersecting AB at C. On measuring AC and BC, we get: AC=BC=4.3 cm.

Description : The normal at a point `P` on the ellipse `x^2+4y^2=16` meets the x-axis at `Qdot` If `M` is the midpoint of the line segment `P Q ,` then the locus of

Last Answer : The normal at a point `P` on the ellipse `x^2+4y^2=16` meets the x-axis at `Qdot` If `M` is ... (pm2sqrt3,pmsqrt1/7)` D. `(pm2sqrt3,pm(4sqrt(3))/4)`

Description : Plot the points P(1, 0), Q(4, 0) and 5(1, 3). Find the coordinates of the point R such that PQRS is a square. -Maths 9th

Last Answer : see the below answer

Description : Plot the points P(1, 0), Q(4, 0) and 5(1, 3). Find the coordinates of the point R such that PQRS is a square. -Maths 9th

Last Answer : see the below answer

Description : The point which lies on the perpendicular bisector of the line segment joining the points B(3,5) is: (a) (-3,0) (b) (5,0) (c) (5,-5) (d) (0,0)

Last Answer : (d) (0,0)

Description : If P, Q and R are three points on a line and Q is between P and R,then prove that PR - QR= PQ. -Maths 9th

Last Answer : Solution :-

Description : PQ and RS are two equal and parallel line segments.Any points M not lying on PQ or RS is joined to Q and S and lines through P parallel to SM meet at N.Prove that line segments MN and PQ are equal and parallel to each other. -Maths 9th

Last Answer : hope its clear