In given figure l || m and M is the mid-point of a line segment AB. -Maths 9th

1 Answer

Answer :

Solution of this question

Related questions

Description : In given figure l || m and M is the mid-point of a line segment AB. -Maths 9th

Last Answer : Solution of this question

Description : In the given figure, equal chords AB and CD of a circle with centre O cut at right angles at E. If M and N are the mid-points of AB and CD respectively, prove that OMEN is a square. -Maths 9th

Last Answer : Join OE. In ΔOME and ΔONE, OM =ON [equal chords are equidistant from the centre] ∠OME = ∠ONE = 90° OE =OE [common sides] ∠OME ≅ ∠ONE [by SAS congruency] ⇒ ME = NE [by CPCT] In quadrilateral OMEN, ... =ON , ME = NE and ∠OME = ∠ONE = ∠MEN = ∠MON = 90° Hence, OMEN is a square. Hence proved.

Description : In the given figure, equal chords AB and CD of a circle with centre O cut at right angles at E. If M and N are the mid-points of AB and CD respectively, prove that OMEN is a square. -Maths 9th

Last Answer : Join OE. In ΔOME and ΔONE, OM =ON [equal chords are equidistant from the centre] ∠OME = ∠ONE = 90° OE =OE [common sides] ∠OME ≅ ∠ONE [by SAS congruency] ⇒ ME = NE [by CPCT] In quadrilateral OMEN, ... =ON , ME = NE and ∠OME = ∠ONE = ∠MEN = ∠MON = 90° Hence, OMEN is a square. Hence proved.

Description : P is the mid - point of side AB of a parallelogram ABCD. A line through B parallel to PD meets DC at Q and AD produced at R (see figure). -Maths 9th

Last Answer : (i) In △ARB,P is the mid point of AB and PD || BR. ∴ D is a mid - point of AR [converse of mid - point theorem] ∴ AR = 2AD But BC = AD [opp sides of ||gm ABCD] Thus, AR = 2BC (ii) ∴ ABCD is a ... a mid - point of AR and DQ || AB ∴ Q is a mid point of BR [converse of mid - point theorem] ⇒ BR = 2BQ

Description : P is the mid - point of side AB of a parallelogram ABCD. A line through B parallel to PD meets DC at Q and AD produced at R (see figure). -Maths 9th

Last Answer : (i) In △ARB,P is the mid point of AB and PD || BR. ∴ D is a mid - point of AR [converse of mid - point theorem] ∴ AR = 2AD But BC = AD [opp sides of ||gm ABCD] Thus, AR = 2BC (ii) ∴ ABCD is a ... a mid - point of AR and DQ || AB ∴ Q is a mid point of BR [converse of mid - point theorem] ⇒ BR = 2BQ

Description : ABCD is a trapezium in which side AB is parallel to side DC and E is the mid-point of side AD. If F is a point on side BC such that segment -Maths 9th

Last Answer : answer:

Description : In trapezium ABCD, AB || DC and L is the mid-point of BC. Through L, a line PQ || AD has been drawn which meets AB in P and DC produced in Q. -Maths 9th

Last Answer : According to question prove that ar (ABCD) = ar (APQD).

Description : In trapezium ABCD, AB || DC and L is the mid-point of BC. Through L, a line PQ || AD has been drawn which meets AB in P and DC produced in Q. -Maths 9th

Last Answer : According to question prove that ar (ABCD) = ar (APQD).

Description : In Fig. 8.53,ABCD is a parallelogram and E is the mid - point of AD. A line through D, drawn parallel to EB, meets AB produced at F and BC at L.Prove that (i) AF = 2DC (ii) DF = 2DL -Maths 9th

Last Answer : Given, E is mid point of AD Also EB∥DF ⇒ B is mid point of AF [mid--point theorem] so, AF=2AB (1) Since, ABCD is a parallelogram, CD=AB ⇒AF=2CD AD∥BC⇒LB∥AD In ΔFDA ⇒LB∥AD ⇒LDLF​=ABFB​=1 from (1) ⇒LF=LD so, DF=2DL

Description : In the given figure, D is the mid-point of BC and L mid-is the point of AD. -Maths 9th

Last Answer : In △ABC, AD is the median ∴ ar(△ABD) = 1/2 ar(△ABC) Again, △ABD BL is the median ∴ ar(△ABL) = 1/2 ar(△ABD) = 1/2 × 1/2 ar((△ABC) = 1/4 ar((△ABC) Hence, value of x is 1/4.

Description : In the given figure, ABCD is a parallelogram and L is the mid - point of DC. -Maths 9th

Last Answer : In ||gm ABCD, AC is the diagonal ∴ ar(△ABC) = ar(△ADC) = 1/2 ar ||gm ABCD) In△ADC, AL is the median ∴ ar(△ADL) = ar(△ACL)= 1/2 ar(△ADC) = 1/4 ar (||gm ABCD) Now, ar(quad.ABCL) = ar(△ABC) + ar(△ACL) = 3/4 ar ... ar(||gm ABCD) = 96 cm2 ∴ ar(△ADC) = 1/2 ar(||gm ABCD) = 1/2 96 = 48 cm2

Description : In the given figure, D is the mid-point of BC and L mid-is the point of AD. -Maths 9th

Last Answer : In △ABC, AD is the median ∴ ar(△ABD) = 1/2 ar(△ABC) Again, △ABD BL is the median ∴ ar(△ABL) = 1/2 ar(△ABD) = 1/2 × 1/2 ar((△ABC) = 1/4 ar((△ABC) Hence, value of x is 1/4.

Description : In the given figure, ABCD is a parallelogram and L is the mid - point of DC. -Maths 9th

Last Answer : In ||gm ABCD, AC is the diagonal ∴ ar(△ABC) = ar(△ADC) = 1/2 ar ||gm ABCD) In△ADC, AL is the median ∴ ar(△ADL) = ar(△ACL)= 1/2 ar(△ADC) = 1/4 ar (||gm ABCD) Now, ar(quad.ABCL) = ar(△ABC) + ar(△ACL) = 3/4 ar ... ar(||gm ABCD) = 96 cm2 ∴ ar(△ADC) = 1/2 ar(||gm ABCD) = 1/2 96 = 48 cm2

Description : ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that (i) D is the mid-point of AC (ii) MD ⊥ AC (iii) CM = MA = ½ AB -Maths 9th

Last Answer : Solution: (i) In ΔACB, M is the midpoint of AB and MD || BC , D is the midpoint of AC (Converse of mid point theorem) (ii) ∠ACB = ∠ADM (Corresponding angles) also, ∠ACB = 90° , ∠ADM = 90° and MD ⊥ AC (iii ... SAS congruency] AM = CM [CPCT] also, AM = ½ AB (M is midpoint of AB) Hence, CM = MA = ½ AB

Description : ABC is a triangle right-angled at C. A line through the mid-point M of hypotenuse AB parallel to BC intersects AC ad D. -Maths 9th

Last Answer : Given: A △ABC , right - angled at C. A line through the mid - point M of hypotenuse AB parallel to BC intersects AC at D. To Prove: (i) D is the mid - point of AC (ii) MD | AC (iii) CM = MA = 1 / 2 ... congruence axiom] ⇒ AM = CM Also, M is the mid - point of AB [given] ⇒ CM = MA = 1 / 2 = AB.

Description : ABC is a triangle right-angled at C. A line through the mid-point M of hypotenuse AB parallel to BC intersects AC ad D. -Maths 9th

Last Answer : Given: A △ABC , right - angled at C. A line through the mid - point M of hypotenuse AB parallel to BC intersects AC at D. To Prove: (i) D is the mid - point of AC (ii) MD | AC (iii) CM = MA = 1 / 2 ... congruence axiom] ⇒ AM = CM Also, M is the mid - point of AB [given] ⇒ CM = MA = 1 / 2 = AB.

Description : l, m and n are three parallel lines intersected by transversals p and q such that l, m and n cut off equal intercepts AB and BC on p (see figure). -Maths 9th

Last Answer : Though E, draw a line parallel to p intersecting L at G and n at H respectively. Since l | | m ⇒ AG | | BE and AB | | GE [by construction] ∴ Opposite sides of quadrilateral AGEB are ... ∠DGE = ∠FHE [alternate interior angles] By ASA congruence axiom, we have △DEG ≅ △FEH Hence, DE = EF

Description : l, m and n are three parallel lines intersected by transversals p and q such that l, m and n cut off equal intercepts AB and BC on p (see figure). -Maths 9th

Last Answer : Though E, draw a line parallel to p intersecting L at G and n at H respectively. Since l | | m ⇒ AG | | BE and AB | | GE [by construction] ∴ Opposite sides of quadrilateral AGEB are ... ∠DGE = ∠FHE [alternate interior angles] By ASA congruence axiom, we have △DEG ≅ △FEH Hence, DE = EF

Description : Prove that every line segment has one and only one mid-point. -Maths 9th

Last Answer : Solution :-

Description : Draw a circle with centre at point O and radius 5 cm. Draw its chord AB, draw the perpendicular bisector of line segment AB. Does it pass through the centre of the circle? -Maths 9th

Last Answer : STEP1: Draw a circle with centre at point O and radius 5 cm. STEP2: Draw its cord AB. STEP3: With centre A as centre and radius more than half of AB, draw two arcs, one on each side ... is perpendicular bisector of AB which is chord of circle, Hence, it passes through the centre of the circle.

Description : In figure X and Y are the mid-points of AC and AB respectively, QP || BC and CYQ and BXP are straight lines. -Maths 9th

Last Answer : Given X and Y are the mid-points of AC and AB respectively. Also, QP|| BC and CYQ, BXP are straight lines. To prove ar (ΔABP) = ar (ΔACQ) Proof Since, X and Y are the mid-points of AC and AB respectively. So, ... ar (ΔBYX) + ar (XYAP) = ar (ΔCXY) + ar (YXAQ) ⇒ ar (ΔABP) = ar (ΔACQ) Hence proved.

Description : In figure X and Y are the mid-points of AC and AB respectively, QP || BC and CYQ and BXP are straight lines. -Maths 9th

Last Answer : Given X and Y are the mid-points of AC and AB respectively. Also, QP|| BC and CYQ, BXP are straight lines. To prove ar (ΔABP) = ar (ΔACQ) Proof Since, X and Y are the mid-points of AC and AB respectively. So, ... ar (ΔBYX) + ar (XYAP) = ar (ΔCXY) + ar (YXAQ) ⇒ ar (ΔABP) = ar (ΔACQ) Hence proved.

Description : 4. ABCD is a trapezium in which AB || DC, BD is a diagonal and E is the mid-point of AD. A line is drawn through E parallel to AB intersecting BC at F (see Fig. 8.30). Show that F is the mid-point of BC. -Maths 9th

Last Answer : . Solution: Given that, ABCD is a trapezium in which AB || DC, BD is a diagonal and E is the mid-point of AD. To prove, F is the mid-point of BC. Proof, BD intersected EF at G. In ΔBAD, E is the ... point of BD and also GF || AB || DC. Thus, F is the mid point of BC (Converse of mid point theorem)

Description : ABC is a triangle right-angled at C. A line through the mid-point of hypotenuse AB and parallel to BC intersects AC at D. Show that -Maths 9th

Last Answer : Solution :-

Description : If m is the mid-point and l is the upper class limit of a class in a continuous frequency distribution, then lower class limit of the class is -Maths 9th

Last Answer : NEED ANSWER

Description : If m is the mid-point and l is the upper class limit of a class in a continuous frequency distribution, then lower class limit of the class is -Maths 9th

Last Answer : (b) Let x and y be the lower and upper class limit of a continuous frequency distribution. Now, mid-point of a class = (x + y)/2 = m [given] ⇒ x + y = 2 m =x + l = 2m [∴ y = l = upper class limit (given)] ⇒ x = 2 m-l Hence, the lower class limit of the class is 2m – l.

Description : The line segment joining the mid-points of any two sides of a triangle is parallel to the third side and equal to half of it. -Maths 9th

Last Answer : Given = A △ABC in which D and E are the mid-points of side AB and AC respectively. DE is joined . To Prove : DE || BC and DE = 1 / 2 BC. Const. : Produce the line segment DE to F , such that DE = ... of ||gm are equal and parallel] Also, DE = EF [by construction] Hence, DE || BC and DE = 1 / 2 BC

Description : If a line segment joining mid-points of two chords of a circle passes through the centre of the circle, prove that the two chords are parallel. -Maths 9th

Last Answer : According to question prove that the two chords are parallel.

Description : If a line segment joining mid-points of two chords of a circle passes through the centre of the circle, prove that the two chords are parallel. -Maths 9th

Last Answer : Given : E and F are mid points of 2 chords AB and CD respectively. Line EF passes through centre. To prove : AB||CD ∠ OFC = ∠ OEA = 90° as line drawn through the centre to bisect the ... EF as traversal for lines AB and CD as alternate interior angles on same side are equal. Therefore, AB || CD

Description : The line segment joining the mid-points of any two sides of a triangle is parallel to the third side and equal to half of it. -Maths 9th

Last Answer : Given = A △ABC in which D and E are the mid-points of side AB and AC respectively. DE is joined . To Prove : DE || BC and DE = 1 / 2 BC. Const. : Produce the line segment DE to F , such that DE = ... of ||gm are equal and parallel] Also, DE = EF [by construction] Hence, DE || BC and DE = 1 / 2 BC

Description : If a line segment joining mid-points of two chords of a circle passes through the centre of the circle, prove that the two chords are parallel. -Maths 9th

Last Answer : According to question prove that the two chords are parallel.

Description : If a line segment joining mid-points of two chords of a circle passes through the centre of the circle, prove that the two chords are parallel. -Maths 9th

Last Answer : Given : E and F are mid points of 2 chords AB and CD respectively. Line EF passes through centre. To prove : AB||CD ∠ OFC = ∠ OEA = 90° as line drawn through the centre to bisect the ... EF as traversal for lines AB and CD as alternate interior angles on same side are equal. Therefore, AB || CD

Description : Prove that the line segment joining the mid-points of the diagonals of a trapezium is parallel to the parallel sides and equal to half of their difference. -Maths 9th

Last Answer : In a parallelogram ABCD, the bisector of ∠ A also bisects BC at X.Prove that AD = 2AB.

Description : Let O be any point inside a triangle ABC. Let L, M and N be the points on AB, BC and CA respectively, -Maths 9th

Last Answer : answer:

Description : Draw a line segment AB of 4 cm in length. Draw a line perpendicular to AB through A and B, respectively. -Maths 9th

Last Answer : The lines are perpendicular to a common line AB. Hence, the angle between these lines will be 90+90=180∘ Since, the angle between them is 180∘, the lines are parallel to each other.

Description : Draw a line segment AB of 4 cm in length. Draw a line perpendicular to AB through A and B, respectively. -Maths 9th

Last Answer : To draw a line perpendicular to AB through A and B, respectively. Use the following steps of construction. 1.Draw a line segment AB = 4 cm. 2.Taking 4 as centre and radius more than ½ AB (i.e ... [since, it sum of interior angle on same side of transversal is 180°, then the two lines are parallel]

Description : In Fig. 7.19, AD and BC are equal perpendicular to a line segment AB. Show that CD bisects AB. -Maths 9th

Last Answer : Solution :-

Description : The line x – 4y = 6 is the perpendicular bisector of the segment AB and the co-ordinates of B are (1, 3). Find the co-ordinates of A. -Maths 9th

Last Answer : Co-ordinates of A are \(\bigg(rac{3 imes9+1 imes5}{3+1},rac{3 imes6+1 imes-2}{3+1}\bigg)\) = \(\bigg(rac{32}{4},rac{16}{4}\bigg)\), i.e. (8, 4)Now, \(x\) - 3y + 4 = 0 ⇒ -3y = -\(x\) - 4 ⇒ y = \(rac{x}{3}+rac{4} ... 8) [Using, y - y1 = m (x - x1)]⇒ 3y - 12 = \(x\) - 8 ⇒ 3y - \(x\) = 4.

Description : Draw a line segment AB of length 5.8 cm. Draw the perpendicular bisector of this line segment. -Maths 9th

Last Answer : Steps of Construction (i) Draw a line segment AB = 5.8 cm. (ii) Taking A as centre and radius more than 1/2AB, draw two arcs, one on either side of AB. (iii) Taking B as centre and ... . (iv) Join CD, intersecting AB at point P. Then, line CPD is the required perpendicular bisector of AB.

Description : The side AB of a parallelogram ABCD is produced to any point P. A line through A and parallel to CP meets CB produced at Q, then parallelogram PBQR is completed (see figure). -Maths 9th

Last Answer : Join AC and QP, also it is given that AQ || CP ∴ △ACQ and △APQ are on the same base AQ and lie between the same parallels AQ || CP. ∴ ar(△ACQ) = ar(△APQ) or ar(△ABC) + ar(△ABQ) = ar(△BPQ) + ar(△ABQ) or ar(△ABC) = ar( △BPQ) or 1/2 ar(||gm ABCD) = 1/2 ar(||gm PBQR) or ar(||gm ABCD) = ar(||gm PBQR)

Description : The side AB of a parallelogram ABCD is produced to any point P. A line through A and parallel to CP meets CB produced at Q, then parallelogram PBQR is completed (see figure). -Maths 9th

Last Answer : Join AC and QP, also it is given that AQ || CP ∴ △ACQ and △APQ are on the same base AQ and lie between the same parallels AQ || CP. ∴ ar(△ACQ) = ar(△APQ) or ar(△ABC) + ar(△ABQ) = ar(△BPQ) + ar(△ABQ) or ar(△ABC) = ar( △BPQ) or 1/2 ar(||gm ABCD) = 1/2 ar(||gm PBQR) or ar(||gm ABCD) = ar(||gm PBQR)

Description : In the given figure, line DE is parallel to line AB. CD = 3 while DA = 6. Which of the following must be true? -Maths 9th

Last Answer : answer:

Description : 5. In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (see Fig. 8.31). Show that the line segments AF and EC trisect the diagonal BD. -Maths 9th

Last Answer : . Solution: Given that, ABCD is a parallelogram. E and F are the mid-points of sides AB and CD respectively. To show, AF and EC trisect the diagonal BD. Proof, ABCD is a parallelogram , AB || CD also, ... (i), DP = PQ = BQ Hence, the line segments AF and EC trisect the diagonal BD. Hence Proved.

Description : The given figure shows a circle with centre O in which a diameter AB bisects the chord PQ at the point R. If PR = RQ = 8 cm and RB = 4 cm, then find the radius of the circle. -Maths 9th

Last Answer : Let r be the radius, then OQ = OB = r and OR = (r - 4) ∴ OQ2 = OR2 + RO2 ⇒ r2 = 64 + (r-4)2 ⇒ r2 = 64 + r2 + 16 - 8r ⇒ 8r = 80 ⇒ r = 10 cm

Description : The given figure shows a circle with centre O in which a diameter AB bisects the chord PQ at the point R. If PR = RQ = 8 cm and RB = 4 cm, then find the radius of the circle. -Maths 9th

Last Answer : Let r be the radius, then OQ = OB = r and OR = (r - 4) ∴ OQ2 = OR2 + RO2 ⇒ r2 = 64 + (r-4)2 ⇒ r2 = 64 + r2 + 16 - 8r ⇒ 8r = 80 ⇒ r = 10 cm

Description : In the given figure, (not drawn to scale), P is a point on AB such that AP : PB = 4 : 3. PQ is parallel to AC and QD -Maths 9th

Last Answer : answer:

Description : E is the mid-point of the side AD of the trapezium ABCD with AB || DC. -Maths 9th

Last Answer : Given ABCD is a trapezium in which AB || DC and EF||AB|| CD. Construction Join, the diagonal AC which intersects EF at O. To show F is the mid-point of BC. Proof Now, in ΔADC, E is the mid-point of AD ... 0 is the mid-point of AC and OF || AB. So, by mid-point theorem, F is the mid-point of BC.

Description : E is the mid-point of the side AD of the trapezium ABCD with AB || DC. -Maths 9th

Last Answer : Given ABCD is a trapezium in which AB || DC and EF||AB|| CD. Construction Join, the diagonal AC which intersects EF at O. To show F is the mid-point of BC. Proof Now, in ΔADC, E is the mid-point of AD ... 0 is the mid-point of AC and OF || AB. So, by mid-point theorem, F is the mid-point of BC.

Description : In Fig.5.7, AC = XD, c is the mid-point of AB and D is the mid-point of XY. Using a Euclid's axiom,show that AB=XY. -Maths 9th

Last Answer : Solution :-

Description : In Fig. 8.31, D is the mid-point of AB and PC = 1/2AP = 3 cm. If AD = DB = 4 cm and DE||BP. Find AE. -Maths 9th

Last Answer : Solution :-