In the adjoining figure, points A, B, C and D lie on a circle. AD = 24 and BC = 12. -Maths 9th

1 Answer

Answer :

AD = 24, BC = 12. In ΔCBE and ΔADE, ∠CBA = ∠CDA, ∠BCE = ∠DAE (Angles in the same segment are equal) ∠BEC = ∠DEA (vertical opposite angles are equal) ⇒ ΔBCE and ΔDEA are similar Δs with sides in the ratio 1 : 2. ∴ Ratio of areas = Ratio of square of sides = 12 : 22 = 1 : 4

Related questions

Description : In the adjoining figure, ABCD is a parallelogram in which AB is produced to E so that BE = AB. Prove that ED bisects BC -Maths 9th

Last Answer : Given, ABCD is a parallelogram. BE = AB To show, ED bisects BC Proof: AB = BE (Given) AB = CD (Opposite sides of ||gm) ∴ BE = CD Let DE intersect BC at F. Now, In ΔCDO and ΔBEO, ∠DCO = ... CD (Proved) ΔCDO ≅ ΔBEO by AAS congruence condition. Thus, BF = FC (by CPCT) Therefore, ED bisects BC. Proved

Description : In the adjoining figure, ABCD is a parallelogram in which AB is produced to E so that BE = AB. Prove that ED bisects BC -Maths 9th

Last Answer : Given, ABCD is a parallelogram. BE = AB To show, ED bisects BC Proof: AB = BE (Given) AB = CD (Opposite sides of ||gm) ∴ BE = CD Let DE intersect BC at F. Now, In ΔCDO and ΔBEO, ∠DCO = ... CD (Proved) ΔCDO ≅ ΔBEO by AAS congruence condition. Thus, BF = FC (by CPCT) Therefore, ED bisects BC. Proved

Description : In the adjoining figure, if ∠BAC = 90° and AD ⊥ BC, then (а) BD.CD = BC2 (b) AB.AC = BC2 (c) BD.CD = AD2 (d) AB.AC = AD2

Last Answer : (c) BD.CD = AD2

Description : ABC and DBC are two triangles on the same BC such that A and D lie on the opposite sides of BC,AB=AC and DB = DC.Show that AD is the perpendicular bisector of BC. -Maths 9th

Last Answer : Solution :-

Description : If AB = 12 cm, BC = 16 cm and AB is perpendicular to BC, then the radius of the circle passing through the points A, B and C is -Maths 9th

Last Answer : According to question the radius of the circle passing through the points A, B and C .

Description : If AB = 12 cm, BC = 16 cm and AB is perpendicular to BC, then the radius of the circle passing through the points A, B and C is -Maths 9th

Last Answer : According to question the radius of the circle passing through the points A, B and C .

Description : ABCD is a parallelogram. A circle through A, B is so drawn that it intersects AD at P and BC at Q. -Maths 9th

Last Answer : Given ABCD is a parallelogram. A circle whose centre O passes through A, B is so drawn that it intersect AD at P and BC at Q To prove Points P, Q, C and D are con-cyclic. Construction Join PQ ... Thus, the quadrilateral QCDP is cyclic. So, the points P, Q, C and D are con-cyclic. Hence proved.

Description : ABCD is a parallelogram. A circle through A, B is so drawn that it intersects AD at P and BC at Q. -Maths 9th

Last Answer : Given ABCD is a parallelogram. A circle whose centre O passes through A, B is so drawn that it intersect AD at P and BC at Q To prove Points P, Q, C and D are con-cyclic. Construction Join PQ ... Thus, the quadrilateral QCDP is cyclic. So, the points P, Q, C and D are con-cyclic. Hence proved.

Description : In the given figure, D is the mid-point of BC and L mid-is the point of AD. -Maths 9th

Last Answer : In △ABC, AD is the median ∴ ar(△ABD) = 1/2 ar(△ABC) Again, △ABD BL is the median ∴ ar(△ABL) = 1/2 ar(△ABD) = 1/2 × 1/2 ar((△ABC) = 1/4 ar((△ABC) Hence, value of x is 1/4.

Description : In the given figure, D is the mid-point of BC and L mid-is the point of AD. -Maths 9th

Last Answer : In △ABC, AD is the median ∴ ar(△ABD) = 1/2 ar(△ABC) Again, △ABD BL is the median ∴ ar(△ABL) = 1/2 ar(△ABD) = 1/2 × 1/2 ar((△ABC) = 1/4 ar((△ABC) Hence, value of x is 1/4.

Description : E and F are respectively the mid-points of the non-parallel sides AD and BC of a trapezium ABCD. -Maths 9th

Last Answer : According to question the mid-points of the non-parallel sides AD and BC of a trapezium ABCD.

Description : P and O are points on opposite sides AD and BC of a parallelogram ABCD such that PQ passes through the point of intersection O of its diagonals AC and BD. -Maths 9th

Last Answer : According to question PQ passes through the point of intersection O of its diagonals AC and BD.

Description : If P, Q and R are the mid-points of the sides, BC, CA and AB of a triangle and AD is the perpendicular from A on BC, then prove that P, Q, R and D are concyclic. -Maths 9th

Last Answer : According to question prove that P, Q, R and D are concyclic.

Description : E and F are respectively the mid-points of the non-parallel sides AD and BC of a trapezium ABCD. -Maths 9th

Last Answer : According to question the mid-points of the non-parallel sides AD and BC of a trapezium ABCD.

Description : P and O are points on opposite sides AD and BC of a parallelogram ABCD such that PQ passes through the point of intersection O of its diagonals AC and BD. -Maths 9th

Last Answer : According to question PQ passes through the point of intersection O of its diagonals AC and BD.

Description : If P, Q and R are the mid-points of the sides, BC, CA and AB of a triangle and AD is the perpendicular from A on BC, then prove that P, Q, R and D are concyclic. -Maths 9th

Last Answer : According to question prove that P, Q, R and D are concyclic.

Description : E and F are respectively the mid-points of the non-parallel sides AD and BC of a trapezium ABCD. Prove that EF||AB and EF = 1/2 (AB +CD). -Maths 9th

Last Answer : Solution :-

Description : Let ABC be a triangle. Let D, E, F be points respectively on segments BC, CA, AB such that AD, BE and CF concur at point K. -Maths 9th

Last Answer : answer:

Description : ABCD is a trapezium in which AB || DC and AD = BC. If P, Q, R and S be respectively the mid-points of BA, BD, CD and CA, then PQRS is a -Maths 9th

Last Answer : Here is your First of all we will draw a quadrilateral ABCD with AD = BC and join AC, BD, P,Q,R,S are the mid points of AB, AC, CD and BD respectively. In the triangle ABC, P and Q are mid points of AB and AC respectively. All sides are equal so PQRS is a Rhombus.

Description : In the figure, chord AB of circle with centre O, is produced to C such that BC = OB. CO is joined and produced to meet the circle in D. -Maths 9th

Last Answer : In △OBC, OB = BC ⇒ ∠BOC = ∠BCO = y ...[angles opp. to equal sides are equal] ∠OBA is the exterior angle of △BOC So, ∠ABO = 2y ...[ext. angle is equal to the sum of int. opp. angles] Similarly, ∠AOD is the exterior angle of △AOC ∴ x = 2y + y = 3y

Description : In the figure, chord AB of circle with centre O, is produced to C such that BC = OB. CO is joined and produced to meet the circle in D. -Maths 9th

Last Answer : In △OBC, OB = BC ⇒ ∠BOC = ∠BCO = y ...[angles opp. to equal sides are equal] ∠OBA is the exterior angle of △BOC So, ∠ABO = 2y ...[ext. angle is equal to the sum of int. opp. angles] Similarly, ∠AOD is the exterior angle of △AOC ∴ x = 2y + y = 3y

Description : A, B and C are three points on a circle. Prove that the perpendicular bisectors of AB, BC and CA are concurrent. -Maths 9th

Last Answer : According to question prove that the perpendicular bisectors of AB, BC and CA are concurrent.

Description : A, B and C are three points on a circle. Prove that the perpendicular bisectors of AB, BC and CA are concurrent. -Maths 9th

Last Answer : According to question prove that the perpendicular bisectors of AB, BC and CA are concurrent.

Description : In the adjoining figure, ABC is an equilateral triangle inscribing a square of maximum possible area. Again in this squares -Maths 9th

Last Answer : (a) (873 - 504√3) cm2.Since ∠CPO = ∠COP = 60º, therefore, PCO is also an equilateral triangle. Let each side of the square MNOP be x cm. Then PC = CO = PO = x cm Then in ΔPAM,\(rac{PM}{PA}\) = sin 60º⇒ \(rac{x ... most square = y2= \(\big(3(7-4\sqrt2)\big)^2\)= 9(49 + 48 - 56√3) = (873 - 504√3) cm2.

Description : In the adjoining figure, P and Q have co-ordinates (4, 6)and (0, 3) respectively. Find (i) the co-ordinates of R (ii) Area of quadrilateral OAPQ. -Maths 9th

Last Answer : Let the line 2x + 3y - 30 = 0 divide the join of A(3, 4) and B(7, 8) at point C(p, q) in the ratio k : 1. Then,p = \(rac{7k+3}{k+1}\), q = \(rac{8k+4}{k+1}\)As the point C lies on the line 2x + 3y - 30 ... {3}{2}+1},rac{8 imesrac{3}{2}+4}{rac{3}{2}+1}\bigg)\) = \(\big(rac{27}{5},rac{32}{5}\big)\).

Description : In figure X and Y are the mid-points of AC and AB respectively, QP || BC and CYQ and BXP are straight lines. -Maths 9th

Last Answer : Given X and Y are the mid-points of AC and AB respectively. Also, QP|| BC and CYQ, BXP are straight lines. To prove ar (ΔABP) = ar (ΔACQ) Proof Since, X and Y are the mid-points of AC and AB respectively. So, ... ar (ΔBYX) + ar (XYAP) = ar (ΔCXY) + ar (YXAQ) ⇒ ar (ΔABP) = ar (ΔACQ) Hence proved.

Description : In figure X and Y are the mid-points of AC and AB respectively, QP || BC and CYQ and BXP are straight lines. -Maths 9th

Last Answer : Given X and Y are the mid-points of AC and AB respectively. Also, QP|| BC and CYQ, BXP are straight lines. To prove ar (ΔABP) = ar (ΔACQ) Proof Since, X and Y are the mid-points of AC and AB respectively. So, ... ar (ΔBYX) + ar (XYAP) = ar (ΔCXY) + ar (YXAQ) ⇒ ar (ΔABP) = ar (ΔACQ) Hence proved.

Description : In the given figure, equal chords AB and CD of a circle with centre O cut at right angles at E. If M and N are the mid-points of AB and CD respectively, prove that OMEN is a square. -Maths 9th

Last Answer : Join OE. In ΔOME and ΔONE, OM =ON [equal chords are equidistant from the centre] ∠OME = ∠ONE = 90° OE =OE [common sides] ∠OME ≅ ∠ONE [by SAS congruency] ⇒ ME = NE [by CPCT] In quadrilateral OMEN, ... =ON , ME = NE and ∠OME = ∠ONE = ∠MEN = ∠MON = 90° Hence, OMEN is a square. Hence proved.

Description : In figure, AOB is a diameter of the circle and C, D, E are any three points on the semi-circle. -Maths 9th

Last Answer : Since, A, C, D and E are four point on a circle, then ACDE is a cyclic quadrilateral. ∠ACD+ ∠AED = 180° …(i) [sum of opposite angles in a cyclic quadrilateral is 180°]

Description : In the given figure, equal chords AB and CD of a circle with centre O cut at right angles at E. If M and N are the mid-points of AB and CD respectively, prove that OMEN is a square. -Maths 9th

Last Answer : Join OE. In ΔOME and ΔONE, OM =ON [equal chords are equidistant from the centre] ∠OME = ∠ONE = 90° OE =OE [common sides] ∠OME ≅ ∠ONE [by SAS congruency] ⇒ ME = NE [by CPCT] In quadrilateral OMEN, ... =ON , ME = NE and ∠OME = ∠ONE = ∠MEN = ∠MON = 90° Hence, OMEN is a square. Hence proved.

Description : In figure, AOB is a diameter of the circle and C, D, E are any three points on the semi-circle. -Maths 9th

Last Answer : Since, A, C, D and E are four point on a circle, then ACDE is a cyclic quadrilateral. ∠ACD+ ∠AED = 180° …(i) [sum of opposite angles in a cyclic quadrilateral is 180°]

Description : 4. ABCD is a trapezium in which AB || DC, BD is a diagonal and E is the mid-point of AD. A line is drawn through E parallel to AB intersecting BC at F (see Fig. 8.30). Show that F is the mid-point of BC. -Maths 9th

Last Answer : . Solution: Given that, ABCD is a trapezium in which AB || DC, BD is a diagonal and E is the mid-point of AD. To prove, F is the mid-point of BC. Proof, BD intersected EF at G. In ΔBAD, E is the ... point of BD and also GF || AB || DC. Thus, F is the mid point of BC (Converse of mid point theorem)

Description : ABCD is a trapezium in which AB || CD and AD = BC (see Fig. 8.23). Show that (i) ∠A = ∠B (ii) ∠C = ∠D (iii) ΔABC ≅ ΔBAD (iv) diagonal AC = diagonal BD [Hint : Extend AB and draw a line through C parallel to DA intersecting AB produced at E.] -Maths 9th

Last Answer : ] Solution: To Construct: Draw a line through C parallel to DA intersecting AB produced at E. (i) CE = AD (Opposite sides of a parallelogram) AD = BC (Given) , BC = CE ⇒∠CBE = ∠CEB also, ∠A+∠CBE = ... BC (Given) , ΔABC ≅ ΔBAD [SAS congruency] (iv) Diagonal AC = diagonal BD by CPCT as ΔABC ≅ ΔBA.

Description : In ΔABC and ΔDEF, AB = DE, AB || DE, BC = EF and BC || EF. Vertices A, B and C are joined to vertices D, E and F respectively (see Fig. 8.22). Show that (i) quadrilateral ABED is a parallelogram ( ... CF and AD = CF (iv) quadrilateral ACFD is a parallelogram (v) AC = DF (vi) ΔABC ≅ ΔDEF. -Maths 9th

Last Answer : . Solution: (i) AB = DE and AB || DE (Given) Two opposite sides of a quadrilateral are equal and parallel to each other. Thus, quadrilateral ABED is a parallelogram (ii) Again BC = EF and BC || EF ... (Given) BC = EF (Given) AC = DF (Opposite sides of a parallelogram) , ΔABC ≅ ΔDEF [SSS congruency]

Description : ABC is a triangle right-angled at C. A line through the mid-point M of hypotenuse AB parallel to BC intersects AC ad D. -Maths 9th

Last Answer : Given: A △ABC , right - angled at C. A line through the mid - point M of hypotenuse AB parallel to BC intersects AC at D. To Prove: (i) D is the mid - point of AC (ii) MD | AC (iii) CM = MA = 1 / 2 ... congruence axiom] ⇒ AM = CM Also, M is the mid - point of AB [given] ⇒ CM = MA = 1 / 2 = AB.

Description : ABCD is a trapezium in which AB II CD and AD = BC (see flg). Show that: -Maths 9th

Last Answer : Given: ABCD is a trapezium, in which AB || DC and AD = BC. To Prove: (i) ∠A = ∠B (ii) ∠C = ∠D (iii) △ABC ≅ △BAD (iv) Diagonal AC = diagonal BD. Const.: Produce AB to E, such that a line through ... △ABC ≅ △BAD [by SAS congruence axiom] (iv) ⇒ AC = BD [c.p.c.t.] Thus, diagonal AC = diagonal BD.

Description : ABCD is a parallelogram and BC is produced to a point Q such that AD = CQ. -Maths 9th

Last Answer : In ||gm ABCD , ar(△APC) = ar(△BCP) ---i) [∵ triangles on the same base and between the same parallels have equal area] Similarly, ar( △ADQ) = ar(△ADC) ---ii) Now, ar(△ADQ) - ar(△ADP) = ar(△ADC) - ar(△ADP) ... ) From (i) and (iii) , we have ar(△BCP) = ar(△DPQ) or ar( △BPC) = ar(△DPQ)

Description : In trapezium ABCD, AB || DC and L is the mid-point of BC. Through L, a line PQ || AD has been drawn which meets AB in P and DC produced in Q. -Maths 9th

Last Answer : According to question prove that ar (ABCD) = ar (APQD).

Description : ABC is a triangle right-angled at C. A line through the mid-point M of hypotenuse AB parallel to BC intersects AC ad D. -Maths 9th

Last Answer : Given: A △ABC , right - angled at C. A line through the mid - point M of hypotenuse AB parallel to BC intersects AC at D. To Prove: (i) D is the mid - point of AC (ii) MD | AC (iii) CM = MA = 1 / 2 ... congruence axiom] ⇒ AM = CM Also, M is the mid - point of AB [given] ⇒ CM = MA = 1 / 2 = AB.

Description : ABCD is a trapezium in which AB II CD and AD = BC (see flg). Show that: -Maths 9th

Last Answer : Given: ABCD is a trapezium, in which AB || DC and AD = BC. To Prove: (i) ∠A = ∠B (ii) ∠C = ∠D (iii) △ABC ≅ △BAD (iv) Diagonal AC = diagonal BD. Const.: Produce AB to E, such that a line through ... △ABC ≅ △BAD [by SAS congruence axiom] (iv) ⇒ AC = BD [c.p.c.t.] Thus, diagonal AC = diagonal BD.

Description : ABCD is a parallelogram and BC is produced to a point Q such that AD = CQ. -Maths 9th

Last Answer : In ||gm ABCD , ar(△APC) = ar(△BCP) ---i) [∵ triangles on the same base and between the same parallels have equal area] Similarly, ar( △ADQ) = ar(△ADC) ---ii) Now, ar(△ADQ) - ar(△ADP) = ar(△ADC) - ar(△ADP) ... ) From (i) and (iii) , we have ar(△BCP) = ar(△DPQ) or ar( △BPC) = ar(△DPQ)

Description : In trapezium ABCD, AB || DC and L is the mid-point of BC. Through L, a line PQ || AD has been drawn which meets AB in P and DC produced in Q. -Maths 9th

Last Answer : According to question prove that ar (ABCD) = ar (APQD).

Description : In Fig. 7.19, AD and BC are equal perpendicular to a line segment AB. Show that CD bisects AB. -Maths 9th

Last Answer : Solution :-

Description : In Fig. 8.53,ABCD is a parallelogram and E is the mid - point of AD. A line through D, drawn parallel to EB, meets AB produced at F and BC at L.Prove that (i) AF = 2DC (ii) DF = 2DL -Maths 9th

Last Answer : Given, E is mid point of AD Also EB∥DF ⇒ B is mid point of AF [mid--point theorem] so, AF=2AB (1) Since, ABCD is a parallelogram, CD=AB ⇒AF=2CD AD∥BC⇒LB∥AD In ΔFDA ⇒LB∥AD ⇒LDLF​=ABFB​=1 from (1) ⇒LF=LD so, DF=2DL

Description : in triangle abc if bd =1/3 bc then prove that 9(ad -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : in triangle abc if bd =1/3 bc then prove that 9(ad -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : If in equilateral triangle ABC, AD is perpendicular on BC then Prove that 3ABsquar=4ADsquare -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : If R is a relation in N × N defined by (a, b) R (c, d) if and only if ad = bc, show that R is an equivalence relation. -Maths 9th

Last Answer : (i) R is reflexive. For all (a, b) ∈ N N we have (a, b) R (a, b) because ab = ba ⇒ R is reflexive. (ii) R is symmetric. Suppose (a, b) R (c, d) Then (a, b) R (c, d) ⇒ ... ) R (e, f) ⇒ R is transitive. Since R is reflexive, symmetric and transitive, therefore, R is an equivalence relation on N N.

Description : ABCD is a square of side a cm. AB, BC, CD and AD are all chords of circles with equal radii each. -Maths 9th

Last Answer : (b) \(\bigg[a^2+4\bigg[rac{\pi{a}^2}{9}-rac{a^2}{4\sqrt3}\bigg]\bigg]\)As shown in the given figures, if a' is each side of the square, then ∠DOC = 120º ⇒ ∠ODC = ∠OCD = 30ºNow in fig. (iii), \(rac{ ... of square + Total area of 4 segments = \(a^2+4\bigg(rac{\pi{a}^2}{9}-rac{a^2}{4\sqrt3}\bigg).\)

Description : In an equilateral triangle ABC, the side BC is trisected at D. Then AD^2 is equal to -Maths 9th

Last Answer : answer: