The area of the parallelogram ABCD is 90 cm2. -Maths 9th

1 Answer

Answer :

Given, area of parallelogram, ABCD = 90 cm2 1.We know that, parallelograms on the same base and between the same parallel are equal in areas. Here, parallelograms ABCD and ABEF are on same base AB and between the same parallels AB and CF. So, ar (ΔBEF) = ar (ABCD) = 90 cm2 2.We know that, if a triangle and a parallelogram are on the same base and between the same parallels, then area of triangle is equal to half of the area of the parallelogram. Here, ΔABD and parallelogram ABCD are on the same base AB and between the same parallels AB and CD. So, ar (ΔABD) = 1/2 ar (ABCD) = 1/2 x 90 = 45 cm2 [∴ ar (ABCD) = 90 cm2] 3.Here, ABEF and parallelogram ABEF are on the same base EF and between the same parallels AB and EF. ar (ΔBEF) = 1/2 ar (ABEF) = 1/2 x 90 = 45 cm2 [∴ ar (ABEF) = 90 cm2, from part (i)]

Related questions

Description : The area of the parallelogram ABCD is 90 cm2. -Maths 9th

Last Answer : Given, area of parallelogram, ABCD = 90 cm2 1.We know that, parallelograms on the same base and between the same parallel are equal in areas. Here, parallelograms ABCD and ABEF are on same base AB and between the same parallels AB ... (ABEF) = 1/2 x 90 = 45 cm2 [∴ ar (ABEF) = 90 cm2, from part (i)]

Description : In Fig. 9.23, ABCD is a parallelogram in which BC is produced to E such A B that CE = BC. AE intersects CD at F. If area of △BDF = 3 cm2, find the area of parallelogram ABCD. -Maths 9th

Last Answer : Solution :-

Description : PQRS is a parallelogram whose area is 180 cm2 and A is any point on the diagonal QS. The area of △ASR = 90 cm2. Find this statement is true or false. -Maths 9th

Last Answer : Solution :- As diagonal of the parallelogram divides it into two triangles of equal area. Since, area (△SRQ ) = 1/2 area(PQRS) area (△SRQ ) = 1/2 x 180 ... = 90 cm2 (Given) This is not possible unless area (△SRQ ) = area (△ASR ) So, the given statement is false.

Description : ABCD is a parallelogram x and y are midpoints of BC and CD respectively.Prove that- Area of triangle axy =3/8 area of parallelogram ABCD -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : In the figure, the area of parallelogram ABCD is -Maths 9th

Last Answer : (c) We know that, area of parallelogram is the product of its any side and the corresponding altitude (or height). Here, when AB is base, then height is DL. Area of parallelogram = AB x DL and when AD is ... = DC x DL and when BC is base, then height is not given. Hence, option (c) is correct.

Description : In figure, if parallelogram ABCD and rectangle ABEM are of equal area, then -Maths 9th

Last Answer : (c) In rectangle ABEM, AB = EM [sides of rectangle] and in parallelogram ABCD, CD = AB On adding, both equations, we get AB + CD = EM + AB (i) We know that, the perpendicular distance between two ... AB+BE + EM+ AM [∴ CD = AB = EM] Perimeter of parallelogram ABCD > perimeter of rectangle ABEM

Description : ABCD is a parallelogram x and y are midpoints of BC and CD respectively.Prove that- Area of triangle axy =3/8 area of parallelogram ABCD -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : In the figure, the area of parallelogram ABCD is -Maths 9th

Last Answer : (c) We know that, area of parallelogram is the product of its any side and the corresponding altitude (or height). Here, when AB is base, then height is DL. Area of parallelogram = AB x DL and when AD is ... = DC x DL and when BC is base, then height is not given. Hence, option (c) is correct.

Description : In figure, if parallelogram ABCD and rectangle ABEM are of equal area, then -Maths 9th

Last Answer : (c) In rectangle ABEM, AB = EM [sides of rectangle] and in parallelogram ABCD, CD = AB On adding, both equations, we get AB + CD = EM + AB (i) We know that, the perpendicular distance between two ... AB+BE + EM+ AM [∴ CD = AB = EM] Perimeter of parallelogram ABCD > perimeter of rectangle ABEM

Description : 5. In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (see Fig. 8.31). Show that the line segments AF and EC trisect the diagonal BD. -Maths 9th

Last Answer : . Solution: Given that, ABCD is a parallelogram. E and F are the mid-points of sides AB and CD respectively. To show, AF and EC trisect the diagonal BD. Proof, ABCD is a parallelogram , AB || CD also, ... (i), DP = PQ = BQ Hence, the line segments AF and EC trisect the diagonal BD. Hence Proved.

Description : ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA (see Fig 8.29). AC is a diagonal. Show that: (i) SR || AC and SR = 1/2 AC (ii) PQ = SR (iii) PQRS is a parallelogram. -Maths 9th

Last Answer : . Solution: (i) In ΔDAC, R is the mid point of DC and S is the mid point of DA. Thus by mid point theorem, SR || AC and SR = ½ AC (ii) In ΔBAC, P is the mid point of AB and Q is the mid point of BC. ... ----- from question (ii) ⇒ SR || PQ - from (i) and (ii) also, PQ = SR , PQRS is a parallelogram.

Description : ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD (see Fig. 8.21). Show that (i) ΔAPB ≅ ΔCQD (ii) AP = CQ -Maths 9th

Last Answer : Q Solution: (i) In ΔAPB and ΔCQD, ∠ABP = ∠CDQ (Alternate interior angles) ∠APB = ∠CQD (= 90o as AP and CQ are perpendiculars) AB = CD (ABCD is a parallelogram) , ΔAPB ≅ ΔCQD [AAS congruency] (ii) As ΔAPB ≅ ΔCQD. , AP = CQ [CPCT]

Description : Diagonal AC of a parallelogram ABCD bisects ∠A (see Fig. 8.19). Show that (i) it bisects ∠C also, (ii) ABCD is a rhombus. -Maths 9th

Last Answer : . Solution: (i) In ΔADC and ΔCBA, AD = CB (Opposite sides of a parallelogram) DC = BA (Opposite sides of a parallelogram) AC = CA (Common Side) , ΔADC ≅ ΔCBA [SSS congruency] Thus, ∠ACD = ∠CAB by ... are equal) Also, AB = BC = CD = DA (Opposite sides of a parallelogram) Thus, ABCD is a rhombus.

Description : In the adjoining figure, ABCD is a parallelogram in which AB is produced to E so that BE = AB. Prove that ED bisects BC -Maths 9th

Last Answer : Given, ABCD is a parallelogram. BE = AB To show, ED bisects BC Proof: AB = BE (Given) AB = CD (Opposite sides of ||gm) ∴ BE = CD Let DE intersect BC at F. Now, In ΔCDO and ΔBEO, ∠DCO = ... CD (Proved) ΔCDO ≅ ΔBEO by AAS congruence condition. Thus, BF = FC (by CPCT) Therefore, ED bisects BC. Proved

Description : The diagonals AC and BD of parallelogram ABCD intersect at the point O. -Maths 9th

Last Answer : ABCD is a parallelogram . ∴ AD | | BC ⇒ ∠ACB = ∠DAC = 34° Now, ∠AOB is an exterior angle of △BOC ∴ ∠OBC + OCB = ∠AOB [∵ ext ∠ = sum of two int. opp. ∠S] ⇒ ∠OBC + 34° = 75° ⇒ ∠OBC = 75° - 34° = 41° or ∠DBC = 41°

Description : ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD . -Maths 9th

Last Answer : In gm ABCD , AP and CQ are perpendicular from the vertices A and C on diagonal BD. Show that : (i) AAPB ≅ ACQD (ii) AP = CQ .

Description : ABCD is a parallelogram and line segments AX, CY bisect the angles A and C, respectively. -Maths 9th

Last Answer : Since opposite angles are equal in a parallelogram . Therefore , in parallelogram ABCD , we have ∠A = ∠C ⇒ 1 / 2 ∠A = 1 / 2 ∠C ⇒ ∠1 = ∠2 ---- i) [∵ AX and CY are bisectors of ∠A and ∠C ... intersects AX and YC at A and Y such that ∠1 = ∠3 i.e. corresponding angles are equal . ∴ AX | | CY .

Description : Points P and Q have been taken on opposite sides AB and CD, respectively of a parallelogram ABCD such that AP = CQ . -Maths 9th

Last Answer : Join AQ and PC . Since ABCD is a parallelogram . ⇒ AB | | DC ⇒ AP | | QC ∵ AP and QC are parts of AB and DC respectively] Also, AP = CQ [given] Thus, APCQ is a parallelogram . We know that diagonals of a parallelogram bisect each other . Hence AC and PQ bisect each other .

Description : In quadrilateral ABCD of the given figure, X and Y are points on diagonal AC such that AX = CY and BXDY ls a parallelogram. -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : P is the mid - point of side AB of a parallelogram ABCD. A line through B parallel to PD meets DC at Q and AD produced at R (see figure). -Maths 9th

Last Answer : (i) In △ARB,P is the mid point of AB and PD || BR. ∴ D is a mid - point of AR [converse of mid - point theorem] ∴ AR = 2AD But BC = AD [opp sides of ||gm ABCD] Thus, AR = 2BC (ii) ∴ ABCD is a ... a mid - point of AR and DQ || AB ∴ Q is a mid point of BR [converse of mid - point theorem] ⇒ BR = 2BQ

Description : In the given figure, ABCD is a parallelogram and L is the mid - point of DC. -Maths 9th

Last Answer : In ||gm ABCD, AC is the diagonal ∴ ar(△ABC) = ar(△ADC) = 1/2 ar ||gm ABCD) In△ADC, AL is the median ∴ ar(△ADL) = ar(△ACL)= 1/2 ar(△ADC) = 1/4 ar (||gm ABCD) Now, ar(quad.ABCL) = ar(△ABC) + ar(△ACL) = 3/4 ar ... ar(||gm ABCD) = 96 cm2 ∴ ar(△ADC) = 1/2 ar(||gm ABCD) = 1/2 96 = 48 cm2

Description : If P,Q,R,S are respectively the mid - points of the sides of a parallelogram ABCD, if ar(||gm PQRS) = 32.5cm2 , then find ar(||gm ABCD). -Maths 9th

Last Answer : Join PR. ∵ △PSR and ||gm APRD are on the same base and between same parallel lines. ar(△PSR) = 1/2 ar(||gm APRD) Similarly, ar(△PQR) = 1/2 ar(||gm PBCR) ar(△PQRS) = ar(△PSR) + △(PQR) = 1/2 ar(||gm APRD) + 1 ... |gm PBCR) = 1/2 ar(||gm ABCD) ⇒ ar(||gm ABCD) = 2 ar(||gm PQRS) = 2 32.5 = 65cm2

Description : ABCD is a parallelogram and O is the point of intersection of its diagonals. -Maths 9th

Last Answer : Here, ABCD is a parallelogram in which its diagonals AC and BD intersect each other in O. ∴ O is the mid - point of AC as well as BD. Now, in △ADB , AO is its median ∴ ar(△ADB) = 2 ar(△AOD) [ ∵ median ... AB and lie between same parallel AB and CD . ∴ ar(ABCD) = 2 ar(△ADB) = 2 8 = 16 cm2

Description : ABCD is a parallelogram in which BC is produced to E such that CE = BC . -Maths 9th

Last Answer : In △ADF and △ECF , we have ∠ADF = ∠ECF [alt.int.∠s] AD = EC [ ∵ AD = BC and BC = EC] ∠DFA = ∠CFE [vert. opp. ∠s] ∴ By AAS congruence rule , △ADF ≅ △ECF ⇒ DF = CF [c.p.c.t.] ⇒ ar(△ADF) = ar(△ECF) ... 3 = 6 cm2 [∵ar(△DFB) = 3 cm2] Thus, ar(||gm ABCD) = 2 ar(△BDC) = 2 6 = 12 cm2

Description : ABCD is a parallelogram and BC is produced to a point Q such that AD = CQ. -Maths 9th

Last Answer : In ||gm ABCD , ar(△APC) = ar(△BCP) ---i) [∵ triangles on the same base and between the same parallels have equal area] Similarly, ar( △ADQ) = ar(△ADC) ---ii) Now, ar(△ADQ) - ar(△ADP) = ar(△ADC) - ar(△ADP) ... ) From (i) and (iii) , we have ar(△BCP) = ar(△DPQ) or ar( △BPC) = ar(△DPQ)

Description : ABCD is a parallelogram whose diagonals intersect at O. If P is any point on BO, prove that : -Maths 9th

Last Answer : (i) Since diagonals of a parallelogram bisect each other. ∴ O is the mid - point AC as well as BD. In △ADC, OD is a median. ∴ ar(△ADO) = ar(△CDO) [∵ A median of a triangle divide it into two triangles of equal ... and (i) , we have ar(△AOB) - ar(△AOP) = ar(△BOC) - ar(△COP) ⇒ ar(△ABP) = (△CBP)

Description : The side AB of a parallelogram ABCD is produced to any point P. A line through A and parallel to CP meets CB produced at Q, then parallelogram PBQR is completed (see figure). -Maths 9th

Last Answer : Join AC and QP, also it is given that AQ || CP ∴ △ACQ and △APQ are on the same base AQ and lie between the same parallels AQ || CP. ∴ ar(△ACQ) = ar(△APQ) or ar(△ABC) + ar(△ABQ) = ar(△BPQ) + ar(△ABQ) or ar(△ABC) = ar( △BPQ) or 1/2 ar(||gm ABCD) = 1/2 ar(||gm PBQR) or ar(||gm ABCD) = ar(||gm PBQR)

Description : The diagonals AC and BD of a parallelogram ABCD intersect each other at the point 0. -Maths 9th

Last Answer : According to question parallelogram ABCD intersect each other at the point 0. If ∠DAC = 32° and ∠AOB = 70°.

Description : Diagonals AC and BD of a parallelogram ABCD intersect each other at O. -Maths 9th

Last Answer : According to parallelogram ABCD intersect each other at O. If OA = 3 cm and OD = 2 cm, determine the lengths of AC and BD.

Description : E and F are points on diagonal AC of a parallelogram ABCD such that AE = CF. -Maths 9th

Last Answer : According to question diagonal AC of a parallelogram ABCD such that AE = CF.

Description : Points P and Q have been taken on opposite sides AB and CD, respectively of a parallelogram ABCD such that AP = CQ. Show that AC and PQ bisect each other. -Maths 9th

Last Answer : According to question parallelogram ABCD such that AP = CQ.

Description : P and Q are the mid-points of the opposite sides AB and CD of a parallelogram ABCD. -Maths 9th

Last Answer : Given In a parallelogram ABCD, P and Q are the mid-points of AS and CD, respectively. To show PRQS is a parallelogram. Proof Since, ABCD is a parallelogram. AB||CD ⇒ AP || QC

Description : P and O are points on opposite sides AD and BC of a parallelogram ABCD such that PQ passes through the point of intersection O of its diagonals AC and BD. -Maths 9th

Last Answer : According to question PQ passes through the point of intersection O of its diagonals AC and BD.

Description : P is the mid-point of the side CD of a parallelogram ABCD. -Maths 9th

Last Answer : According to question prove that DA = AR and CQ = QR.

Description : ABCD is a parallelogram in which BC is produced to E such that CE = BC. AE intersects CD at F. -Maths 9th

Last Answer : According to question find the area of the parallelogram ABCD.

Description : A point E is taken on the side BC of a parallelogram ABCD. -Maths 9th

Last Answer : Given ABCD is a parallelogram and E is a point on BC. AE and DC are produced to meet at F. AB||CD anti BC||AD ,..(i)

Description : The diagonals of a parallelogram ABCD intersect at a point O. -Maths 9th

Last Answer : According to question PQ divides the parallelogram into two parts of equal area.

Description : ABCD is a parallelogram. A circle through A, B is so drawn that it intersects AD at P and BC at Q. -Maths 9th

Last Answer : Given ABCD is a parallelogram. A circle whose centre O passes through A, B is so drawn that it intersect AD at P and BC at Q To prove Points P, Q, C and D are con-cyclic. Construction Join PQ ... Thus, the quadrilateral QCDP is cyclic. So, the points P, Q, C and D are con-cyclic. Hence proved.

Description : In the adjoining figure, ABCD is a parallelogram in which AB is produced to E so that BE = AB. Prove that ED bisects BC -Maths 9th

Last Answer : Given, ABCD is a parallelogram. BE = AB To show, ED bisects BC Proof: AB = BE (Given) AB = CD (Opposite sides of ||gm) ∴ BE = CD Let DE intersect BC at F. Now, In ΔCDO and ΔBEO, ∠DCO = ... CD (Proved) ΔCDO ≅ ΔBEO by AAS congruence condition. Thus, BF = FC (by CPCT) Therefore, ED bisects BC. Proved

Description : The diagonals AC and BD of parallelogram ABCD intersect at the point O. -Maths 9th

Last Answer : ABCD is a parallelogram . ∴ AD | | BC ⇒ ∠ACB = ∠DAC = 34° Now, ∠AOB is an exterior angle of △BOC ∴ ∠OBC + OCB = ∠AOB [∵ ext ∠ = sum of two int. opp. ∠S] ⇒ ∠OBC + 34° = 75° ⇒ ∠OBC = 75° - 34° = 41° or ∠DBC = 41°

Description : ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD . -Maths 9th

Last Answer : In gm ABCD , AP and CQ are perpendicular from the vertices A and C on diagonal BD. Show that : (i) AAPB ≅ ACQD (ii) AP = CQ .

Description : ABCD is a parallelogram and line segments AX, CY bisect the angles A and C, respectively. -Maths 9th

Last Answer : Since opposite angles are equal in a parallelogram . Therefore , in parallelogram ABCD , we have ∠A = ∠C ⇒ 1 / 2 ∠A = 1 / 2 ∠C ⇒ ∠1 = ∠2 ---- i) [∵ AX and CY are bisectors of ∠A and ∠C ... intersects AX and YC at A and Y such that ∠1 = ∠3 i.e. corresponding angles are equal . ∴ AX | | CY .

Description : Points P and Q have been taken on opposite sides AB and CD, respectively of a parallelogram ABCD such that AP = CQ . -Maths 9th

Last Answer : Join AQ and PC . Since ABCD is a parallelogram . ⇒ AB | | DC ⇒ AP | | QC ∵ AP and QC are parts of AB and DC respectively] Also, AP = CQ [given] Thus, APCQ is a parallelogram . We know that diagonals of a parallelogram bisect each other . Hence AC and PQ bisect each other .

Description : In quadrilateral ABCD of the given figure, X and Y are points on diagonal AC such that AX = CY and BXDY ls a parallelogram. -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : P is the mid - point of side AB of a parallelogram ABCD. A line through B parallel to PD meets DC at Q and AD produced at R (see figure). -Maths 9th

Last Answer : (i) In △ARB,P is the mid point of AB and PD || BR. ∴ D is a mid - point of AR [converse of mid - point theorem] ∴ AR = 2AD But BC = AD [opp sides of ||gm ABCD] Thus, AR = 2BC (ii) ∴ ABCD is a ... a mid - point of AR and DQ || AB ∴ Q is a mid point of BR [converse of mid - point theorem] ⇒ BR = 2BQ

Description : In the given figure, ABCD is a parallelogram and L is the mid - point of DC. -Maths 9th

Last Answer : In ||gm ABCD, AC is the diagonal ∴ ar(△ABC) = ar(△ADC) = 1/2 ar ||gm ABCD) In△ADC, AL is the median ∴ ar(△ADL) = ar(△ACL)= 1/2 ar(△ADC) = 1/4 ar (||gm ABCD) Now, ar(quad.ABCL) = ar(△ABC) + ar(△ACL) = 3/4 ar ... ar(||gm ABCD) = 96 cm2 ∴ ar(△ADC) = 1/2 ar(||gm ABCD) = 1/2 96 = 48 cm2

Description : If P,Q,R,S are respectively the mid - points of the sides of a parallelogram ABCD, if ar(||gm PQRS) = 32.5cm2 , then find ar(||gm ABCD). -Maths 9th

Last Answer : Join PR. ∵ △PSR and ||gm APRD are on the same base and between same parallel lines. ar(△PSR) = 1/2 ar(||gm APRD) Similarly, ar(△PQR) = 1/2 ar(||gm PBCR) ar(△PQRS) = ar(△PSR) + △(PQR) = 1/2 ar(||gm APRD) + 1 ... |gm PBCR) = 1/2 ar(||gm ABCD) ⇒ ar(||gm ABCD) = 2 ar(||gm PQRS) = 2 32.5 = 65cm2

Description : ABCD is a parallelogram and O is the point of intersection of its diagonals. -Maths 9th

Last Answer : Here, ABCD is a parallelogram in which its diagonals AC and BD intersect each other in O. ∴ O is the mid - point of AC as well as BD. Now, in △ADB , AO is its median ∴ ar(△ADB) = 2 ar(△AOD) [ ∵ median ... AB and lie between same parallel AB and CD . ∴ ar(ABCD) = 2 ar(△ADB) = 2 8 = 16 cm2

Description : ABCD is a parallelogram in which BC is produced to E such that CE = BC . -Maths 9th

Last Answer : In △ADF and △ECF , we have ∠ADF = ∠ECF [alt.int.∠s] AD = EC [ ∵ AD = BC and BC = EC] ∠DFA = ∠CFE [vert. opp. ∠s] ∴ By AAS congruence rule , △ADF ≅ △ECF ⇒ DF = CF [c.p.c.t.] ⇒ ar(△ADF) = ar(△ECF) ... 3 = 6 cm2 [∵ar(△DFB) = 3 cm2] Thus, ar(||gm ABCD) = 2 ar(△BDC) = 2 6 = 12 cm2

Description : ABCD is a parallelogram and BC is produced to a point Q such that AD = CQ. -Maths 9th

Last Answer : In ||gm ABCD , ar(△APC) = ar(△BCP) ---i) [∵ triangles on the same base and between the same parallels have equal area] Similarly, ar( △ADQ) = ar(△ADC) ---ii) Now, ar(△ADQ) - ar(△ADP) = ar(△ADC) - ar(△ADP) ... ) From (i) and (iii) , we have ar(△BCP) = ar(△DPQ) or ar( △BPC) = ar(△DPQ)