Resolving power of grating is given by
A. λ/2  
B. λ/dλ  
C. dλ/λ  
D. none of these

1 Answer

Answer :

B. λ/dλ

Related questions

Description : Find the maximum value of resolving power of a grating 3 cm wide having 5000 lines per cm, if the wavelength of light used is 5890 A0. A. 40000 B. 45000 C. 4500 D. 5000

Last Answer : a option

Description : What is the effect of increasing the number of slits on the intensity of Central maxima of diffraction pattern of a diffraction grating? A. Intensity of central maxima will decrease B. Intensity ... maxima will increase C. There will not be any effect D. Diffraction pattern will disappear

Last Answer : B. Intensity of central maxima will increase

Description : Fraunhofer diffraction at a Plane Grating What is the meaning of grating element for a diffraction grating? A It is the width of a single slit B. It is the width of the opaque space C. It is the distance between two slits D. It is the width of diffraction grating

Last Answer : C. It is the distance between two slits

Description : X-ray diffraction can be observed by using __________. A. Diffraction Grating B. Rock salt crystal C. Convex lens D. Michelson’s interferometer

Last Answer : A. Diffraction Grating

Description : .The grating used to observe, diffraction of visible light can have approximately __________. A.300 lines per cm B.3000 lines per cm, C. 15000 lines per cm D. 30 lines per cm

Last Answer : C. 15000 lines per cm

Description : The diffraction observed by diffraction grating can also be Termed as __________. A. Single slit diffraction B. double slit Diffraction C. multiple Slit Diffraction D. Fresnel’s Diffraction

Last Answer : A. Single slit diffraction

Description : A diffraction grating is optically equivalent to a multiple slit system in which the number of slit , N is typically A.2000/cm B.3000/cm C.5000/cm D.1000/cm

Last Answer : C.5000/cm

Description : What is the highest order spectrum which may be seen with monochromatic light of wavelength 5000 A0by means of diffraction grating with 5000 lines/cm? A. 2 B. 4 C. 8 D. 16

Last Answer : B. 4

Description : In plane transmission grating, the angle of diffraction for second order maxima for wavelength 5 x 10 -5 cm is 30 0. Calculate the number of lines in one centimeter of the grating surface. A. 1000 lines/cm B. 5000 lines/cm C. 500 lines/cm D. 10000 lines/cm

Last Answer : B. 5000 lines/cm

Description : A grating has 6000 lines per cm. How many orders of light of wavelength 4500 A 0 can be seen? A. 1 B. 2 C. 3 D. 4

Last Answer : C. 3

Description : When a light wave suffers reflection at the interface between air and glass medium, the change of wavelength of the reflected wave in air is equal to (a) 0 (b) λ/2 (c) λ (d) 2λ

Last Answer : (b) λ/2

Description : The interference in thin films is because (a) The film reflects some light (b) The film is thin enough so that refracted ray is close to reflected ray (c) The reflected ray undergo path change of λ/2 (d) All of above

Last Answer : (d) All of above

Description : To observe interference in thin films with a light of wavelength λ, the thickness of the film (a) Should be much smaller than λ (b) Should be a few thousand times of λ (c) Should be of the order of λ (d) Should be of the order of nanometer

Last Answer : (c) Should be of the order of λ

Description : The path difference corresponding to a phase difference of π radian is __________. A.2λ B .λ/2 C .λ /4 D. λ

Last Answer : B .λ/2

Description : .In Rayleigh law of scattering ,The intensity of scattered light is proportional to A. λ B. λ -2 C. λ -4 D. λ-1

Last Answer : C. λ -4

Description : The fringe width and the angle of wedge are related to A. β=λ/2θ B. θ =λ/2 β C. β=λ/θ D. λ= β/2θ

Last Answer : A. β=λ/2θ

Description : The resolving power of a spectrometer consisting of collimator, a grating and a telescope can be increased by (A) increasing the angular magnification of the telescope (B) increasing the period of the ... (C) decreasing the period of the grating (D) decreasing the slit-width of the collimator

Last Answer : The resolving power of a spectrometer consisting of collimator, a grating and a telescope can be increased by decreasing the period of the grating

Description : For all transparent material substances, the index of refraction A. A.is less than 1 B. B.is greater than 1 C. C.is equal to 1 D. Could be any of the given answers; it all depends on optical density

Last Answer : B. B.is greater than 1

Description : Newton's rings are formed because of interference between the light Reflected from (a) Upper surface of Plano-convex lens and lower surface of plane glass plate (b) Lower surface of Plano-convex ... c) Lower and upper surface of Plano-convex (d) Lower and upper surfaces of plane glass plate

Last Answer : (b) Lower surface of Plano-convex lens and upper surface of plane glass plate

Description : Why in Newton's rings setup, the beam splitter (mirror) is kept at 450? (a) It allows light rays to incident at 450over the top surface of Plano convex lens (b) It allows light rays to ... Plano convex lens (d) It allows light rays to incident at 900over the top surface of Plano convex lens

Last Answer : (d) It allows light rays to incident at 900over the top surface of Plano convex lens

Description : In Newton’s rings experiment, if we reduce the radius of curvature of Plano Convex lens to zero, what will be effect on Newton’s rings? (a)They will become more bright (b)They will become more dark ( c)They will disappear (d) They will be more dense

Last Answer : ( c)They will disappear

Description : Newton’s light illustrate the phenomenon of (a) Interference (b) Diffraction (c) Dispersion (d) Polarisation

Last Answer : (a) Interference

Description : In case of thin film of non-uniform thickness, when illuminated with white light, the film appears colored. This is due to change of what factor? (a) Conditions for path difference at different points of ... of film (c) Thickness of film is different at different points of film (d) All of above

Last Answer : (d) All of above

Description : Newton's rings experiment is performed and radius (or diameter) is calculated. Now Plano-convex lens is replaced with another Plano-convex lens of greater Radius of curvature. What will be effect on radius ( ... ) will increase (c) Radius (or diameter) will decrease (d) There will be no effect

Last Answer : (b) Radius (or diameter) will increase

Description : Newton's rings experiment is performed with air gap between lens and plate. Now that gap is filled with water. What will be effect on radius (or diameter)? (a) Radius (or diameter) will remain ... or diameter) will increase (c) Radius (or diameter) will decrease (d) There will be no effect

Last Answer : (c) Radius (or diameter) will decrease

Description : In Newton's rings experiment, if monochromatic source of light is replaced by another monochromatic source of higher wavelength. What will be the effect on radius (or diameter)? (a) Radius (or ... be no effect (d) Radius (or diameter) will remain constant but there will be more brightness

Last Answer : (b) Radius (or diameter) will increase

Description : he Radius (or diameter) of bright rings in Newton's rings is (a) Directly proportional to the square root of odd numbers (b) Inversely proportional to the square root of natural numbers (c) ... to the square root of even numbers (d) Directly proportional to the square root of natural numbers

Last Answer : (a) Directly proportional to the square root of odd numbers

Description : Interference pattern is observed in wedge-shaped film for monochromatic light. Now monochromatic light is replaced by white light. What will be the effect on interference pattern? (a) It will turn to dark (b) It will turn to bright (c) Bands will disappear (d) It will be a mixture of all colors

Last Answer : (d) It will be a mixture of all colors

Description : Interference pattern is observed in wedge-shaped film and bandwidth is noted. Now the angle of wedge is reduced to zero. What will be the effect on Bandwidth? (a) Bandwidth increases (b) Bandwidth decreases (c) Bands will disappear (d) There will not any effect

Last Answer : (c) Bands will disappear

Description : Interference pattern is observed in wedge-shaped film and bandwidth is noted. Now the angle of wedge is reduced. What will be the effect on bandwidth? (a) Bandwidth increases (b) Bandwidth decreases (c) Bands will disappear (d) There will not any effect

Last Answer : B) BANDWIDTH DECREASES

Description : Interference pattern is observed in wedge-shaped film and bandwidth is noted. Now the thin film is replaced by the film of higher refractive index. What will be the effect on bandwidth? (a) Bandwidth increases (b) Bandwidth decreases (c) Bands will merge (d) There will not any effect

Last Answer : (b) Bandwidth decreases

Description : What is the nature of interference pattern for thin film of wedge shaped (a) Concave outside (b) Convex outside (b) Equally spaced (d) Concave inside

Last Answer : (b) Convex outside

Description : What is the nature of interference pattern at the contact edge of wedge shaped film (a) Always bright (b) Always dark (c) Bright or dark depending upon the thickness of other end (d) Bright or dark depending upon the wavelength of the light

Last Answer : (b) Always dark

Description : In wedge shaped film the interference pattern has nature (a) Parallel to the end where thickness is non-zero (b) Perpendicular to contact edge (c) Parallel to contact edge (d) Perpendicular to the end where thickness is non-zero

Last Answer : (c) Parallel to contact edge

Description : A wedge shaped thin has (a) Non-uniform thickness (b) Zero thickness at one end and it increasing towards other end (c) Zero thickness at both ends (d) Thickness increase and decrease alternately

Last Answer : b) Zero thickness at one end and it increasing towards other end

Description : In interference experiment, by keeping all other parameters constant, if you see the thin film interference from different angles, you will observe (a)Uniform illumination of screen (b) Uniform ... c) Equally spaced dark and white bands (d) Few colored bands and then general illumination

Last Answer : (d) Few colored bands and then general illumination

Description : A thin film is observed in white light. The color of the film seen at a particular point depends upon (a)Location of observer (b)Width of the source (c) Distance of the source (d) Brightness of the source

Last Answer : (a)Location of observer

Description : In interference experiment, monochromatic light is replaced by white light, we will see (a) Uniform illumination of screen (b) Uniform darkness on the screen (c) Equally spaced dark and white bands (d) Few colored bands and then general illumination

Last Answer : (d) Few colored bands and then general illumination

Description : When a light wave suffers reflection at the interface between air and glass medium, the change of phase of the reflected wave in air is equal to (a) 0 (b) π (c) 2π (d) π/2

Last Answer : (b) π

Description : If you look perpendicular at thin film and move yourself away from the film (staying perpendicular to the film), you will notice (a) Reflected light becomes brighter and brighter (b) Reflected ... and darker (c) Reflected light alternates between darker and brighter (d) None of the Above

Last Answer : (c) Reflected light alternates between darker and brighter

Description : Which of the following phenomenon produces colors in soap bubble? (a) Interference (b) Diffraction (c) Polarization (d) Dispersion

Last Answer : (a) Interference

Description : Interference in thin film is mainly because of (a) Division amplitude (b) Division of wave fronts (c) Addition of amplitude (d) Addition of wave fronts

Last Answer : (a) Division amplitude

Description : A film is said to be thin if its thickness is (a) Much smaller than wavelength of light (b) Comparable with one wavelength of light (c) Of the order of nanometer (10-9 m) (d) Of the order of Pico meter (10-12 m)

Last Answer : (b) Comparable with one wavelength of light

Description : The number of lines on plane gratings is 5000. If it is illuminated by a wavelength of light 6000 A0, how many orders will be visible? A. 3 B. 3.33 C. 4 D. 2.0

Last Answer : A. 3

Description : What is true for intensity of scattered light according to Rayleigh's law? A. The intensity for scattering for light of largest wavelength more B. The light of smallest wavelength will be scattered ... C. All the wavelengths are scattered equally D. Intensity of light is not affected by scattering

Last Answer : B. The light of smallest wavelength will be scattered more

Description : Diffraction due to circular aperture If a light passes through a small pinhole, and incident on a screen. What will be observed on the screen? A.A sharp bright point of the width equal to ... A bright ring at the centre surrounded by alternate dark and bright rings D. A diffused bright point

Last Answer : C. A bright ring at the centre surrounded by alternate dark and bright rings

Description : How the intensity of secondary maxima varies in case of Fraunhofer diffraction pattern for single slit? A. Intensity of secondary maxima decreases on either sides B. Intensity of ... C. Intensity increases and decreases alternately D. Intensity of secondary maxima increases on either sides

Last Answer : A. Intensity of secondary maxima decreases on either sides

Description : The condition for minima in Fraunhofer diffraction for single slit is asinθ = mλWhat is ‘θ’? A. Angle of incidence of incident rays at the slit B. Angle at which diffracted rays strikes the screen C. Angle between slit and screen D. Angle of diffraction at which rays are diffracted at slit

Last Answer : D. Angle of diffraction at which rays are diffracted at slit