What is the effect of increasing the number of slits on the intensity of   Central maxima of diffraction pattern of a diffraction grating? A. Intensity of central maxima will decrease
B. Intensity of central maxima will increase
C. There will not be any effect
D. Diffraction pattern will disappear

1 Answer

Answer :

B. Intensity of central maxima will increase

Related questions

Description : In plane transmission grating, the angle of diffraction for second order maxima for wavelength 5 x 10 -5 cm is 30 0. Calculate the number of lines in one centimeter of the grating surface. A. 1000 lines/cm B. 5000 lines/cm C. 500 lines/cm D. 10000 lines/cm

Last Answer : B. 5000 lines/cm

Description : How the intensity of secondary maxima varies in case of Fraunhofer diffraction pattern for single slit? A. Intensity of secondary maxima decreases on either sides B. Intensity of ... C. Intensity increases and decreases alternately D. Intensity of secondary maxima increases on either sides

Last Answer : A. Intensity of secondary maxima decreases on either sides

Description : Fraunhofer diffraction at a Plane Grating What is the meaning of grating element for a diffraction grating? A It is the width of a single slit B. It is the width of the opaque space C. It is the distance between two slits D. It is the width of diffraction grating

Last Answer : C. It is the distance between two slits

Description : A diffraction grating is optically equivalent to a multiple slit system in which the number of slit , N is typically A.2000/cm B.3000/cm C.5000/cm D.1000/cm

Last Answer : C.5000/cm

Description : In Fraunhofer diffraction wave front used is __________. A. Spherical B. Circular C. Plane D. Conical 71.In diffraction pattern of monochromatic light the bright bands formed are __________. A. of uniform intensity B. of non-uniform intensity C. of uniform width D. is of different colors

Last Answer : A. of uniform intensity

Description : Coherent light of a single frequency passes through a double slit with a separation d, to produce a pattern on a screen as distance D from the slits. What would cause the separation between adjacent ... d between the slits C. increase the distance D. increase the frequency of the incident light

Last Answer : B. increase the separation d between the slits

Description : X-ray diffraction can be observed by using __________. A. Diffraction Grating B. Rock salt crystal C. Convex lens D. Michelson’s interferometer

Last Answer : A. Diffraction Grating

Description : .The grating used to observe, diffraction of visible light can have approximately __________. A.300 lines per cm B.3000 lines per cm, C. 15000 lines per cm D. 30 lines per cm

Last Answer : C. 15000 lines per cm

Description : The diffraction observed by diffraction grating can also be Termed as __________. A. Single slit diffraction B. double slit Diffraction C. multiple Slit Diffraction D. Fresnel’s Diffraction

Last Answer : A. Single slit diffraction

Description : What is the highest order spectrum which may be seen with monochromatic light of wavelength 5000 A0by means of diffraction grating with 5000 lines/cm? A. 2 B. 4 C. 8 D. 16

Last Answer : B. 4

Description : In Fraunhofer diffraction pattern for single slit, a central maximum is obtained when angle of diffraction q is equal to zero. What it actually indicates? A. All the diffracted rays are parallel and focused ... are diffracted by the slit in all the directions D. The rays are reflected by the slit

Last Answer : A. All the diffracted rays are parallel and focused by slit at a single point on screen

Description : Interference pattern is observed in wedge-shaped film for monochromatic light. Now monochromatic light is replaced by white light. What will be the effect on interference pattern? (a) It will turn to dark (b) It will turn to bright (c) Bands will disappear (d) It will be a mixture of all colors

Last Answer : (d) It will be a mixture of all colors

Description : Interference pattern is observed in wedge-shaped film and bandwidth is noted. Now the angle of wedge is reduced to zero. What will be the effect on Bandwidth? (a) Bandwidth increases (b) Bandwidth decreases (c) Bands will disappear (d) There will not any effect

Last Answer : (c) Bands will disappear

Description : Interference pattern is observed in wedge-shaped film and bandwidth is noted. Now the angle of wedge is reduced. What will be the effect on bandwidth? (a) Bandwidth increases (b) Bandwidth decreases (c) Bands will disappear (d) There will not any effect

Last Answer : B) BANDWIDTH DECREASES

Description : Diffraction due to circular aperture If a light passes through a small pinhole, and incident on a screen. What will be observed on the screen? A.A sharp bright point of the width equal to ... A bright ring at the centre surrounded by alternate dark and bright rings D. A diffused bright point

Last Answer : C. A bright ring at the centre surrounded by alternate dark and bright rings

Description : A wedge shaped thin has (a) Non-uniform thickness (b) Zero thickness at one end and it increasing towards other end (c) Zero thickness at both ends (d) Thickness increase and decrease alternately

Last Answer : b) Zero thickness at one end and it increasing towards other end

Description : A wedge shaped thin has A. Non-uniform thickness B. Zero thickness at one end and it increasing towards other end C. Zero thickness at both ends D. Thickness increase and decrease alternately

Last Answer : B. Zero thickness at one end and it increasing towards other end

Description : .If we narrow the distance between two slits in Young’s experiment the fringes width __________. A. Increases B. Decreases C. Remains same D. becomes zero

Last Answer : B. Decreases

Description : In a Young's double-slit experiment the center of a bright fringe occurs wherever waves from the slits differ in the distance they travel by a multiple of: A. a fourth of a wavelength B. a half a wavelength C. a wavelength D. three-fourths of a wavelength

Last Answer : C. a wavelength

Description : Colors in thin films are because of A. Dispersion C. Interference B. Compton effect D. Diffraction

Last Answer : C. Interference

Description : Which of the following does not support the wave nature of light A. Interference C. Polarisation B. Compton effect D. Diffraction

Last Answer : B. Compton effec

Description : The wave nature of light is demonstrated by which of the following? A. The photoelectric effect B. Color C. The speed of light D. Diffraction

Last Answer : D. Diffraction

Description : Resolving power of grating is given by A. λ/2 B. λ/dλ C. dλ/λ D. none of these

Last Answer : B. λ/dλ

Description : Find the maximum value of resolving power of a grating 3 cm wide having 5000 lines per cm, if the wavelength of light used is 5890 A0. A. 40000 B. 45000 C. 4500 D. 5000

Last Answer : a option

Description : A grating has 6000 lines per cm. How many orders of light of wavelength 4500 A 0 can be seen? A. 1 B. 2 C. 3 D. 4

Last Answer : C. 3

Description : In Newton’s rings experiment, if we reduce the radius of curvature of Plano Convex lens to zero, what will be effect on Newton’s rings? (a)They will become more bright (b)They will become more dark ( c)They will disappear (d) They will be more dense

Last Answer : ( c)They will disappear

Description : In Newton’s rings experiment, if we reduce the radius of curvature of Plano convex lens to zero, what will be effect on Newton’s rings? A. They will become brighter B. They will become darker C. They will disappear D. They will be more dense

Last Answer : C. They will disappear

Description : Newton's rings experiment is performed and radius (or diameter) is calculated. Now Plano-convex lens is replaced with another Plano-convex lens of greater Radius of curvature. What will be effect on radius ( ... ) will increase (c) Radius (or diameter) will decrease (d) There will be no effect

Last Answer : (b) Radius (or diameter) will increase

Description : Newton's rings experiment is performed with air gap between lens and plate. Now that gap is filled with water. What will be effect on radius (or diameter)? (a) Radius (or diameter) will remain ... or diameter) will increase (c) Radius (or diameter) will decrease (d) There will be no effect

Last Answer : (c) Radius (or diameter) will decrease

Description : In Newton's rings experiment, if monochromatic source of light is replaced by another monochromatic source of higher wavelength. What will be the effect on radius (or diameter)? (a) Radius (or ... be no effect (d) Radius (or diameter) will remain constant but there will be more brightness

Last Answer : (b) Radius (or diameter) will increase

Description : When Newton’s rings interference pattern is viewed from above by means of reflected light, the central spot is __________. A. Dark B. Multi colored C. Bright D. None of these

Last Answer : A. Dark

Description : Interference pattern is observed in wedge-shaped film and bandwidth is noted. Now the thin film is replaced by the film of higher refractive index. What will be the effect on bandwidth? (a) Bandwidth increases (b) Bandwidth decreases (c) Bands will merge (d) There will not any effect

Last Answer : (b) Bandwidth decreases

Description : Newton’s light illustrate the phenomenon of (a) Interference (b) Diffraction (c) Dispersion (d) Polarisation

Last Answer : (a) Interference

Description : Which of the following phenomenon produces colors in soap bubble? (a) Interference (b) Diffraction (c) Polarization (d) Dispersion

Last Answer : (a) Interference

Description : The condition for minima in Fraunhofer diffraction for single slit is asinθ = mλWhat is ‘θ’? A. Angle of incidence of incident rays at the slit B. Angle at which diffracted rays strikes the screen C. Angle between slit and screen D. Angle of diffraction at which rays are diffracted at slit

Last Answer : D. Angle of diffraction at which rays are diffracted at slit

Description : Which of the following condition is essential for observing Fraunhofer diffraction? A. Source must be close to slit and screen should be at infinite distance B. Both source and screen must be close to ... infinity and screen should be close to the slit D. Both source and screen must be at infinity

Last Answer : D. Both source and screen must be at infinity

Description : Diffraction is special type of __________. A. Reflection B. Refraction C. Interference D. Polarization

Last Answer : B. Refraction

Description : here are two types of diffraction Fresnel and __________. A. Michelson B. De Broglie C. Fraunhofer D. Huygens

Last Answer : C. Fraunhofer

Description : as the order increases, the width of a dark band in diffraction Patterns __________. A. Increases B. Decreases C. Does not change D. becomes infinity

Last Answer : Increases

Description : Fraunhofer diffraction is observed when __________. A. Only screen is placed at finite distance B. source is placed at finite distance C. neither source nor screen is at finite distance D. None of these

Last Answer : D. None of these

Description : Fresnel’s type diffraction is observed when __________. A. Only screen is placed at finite distance B. Only source is placed at finite distance C. Both source and screen are at finite distance D. Neither source nor screen is at finite distance

Last Answer : C. Both source and screen are at finite distance

Description : On a rainy day, small oil films on water show brilliant colors'. This is due to A. dispersion B. interference C. diffraction D. Polarization 49.The critical angle for a beam of light ... A. absorbed B. totally reflected C. Partially reflected and partially transmitted D. Totally transmitted

Last Answer : C. Partially reflected and partially transmitted

Description : To find prominent diffraction , the size of diffraction object should be A. greater than wavelength of light used B. comparable to order of wavelength of light C. less than wavelength of light used D. none of these.

Last Answer : B. comparable to order of wavelength of light

Description : In Fresnel diffraction A. source of light is kept at infinite distance from the aperture B. source of light is kept at finite distance from the aperture C. Convex lens used D. aperture width is selected so that it can acts as a point source

Last Answer : B. source of light is kept at finite distance from the aperture

Description : significant diffraction of X ray can be obtained A. By a single slit B. By a double slit C. By diffraction D. By Atomic crystal

Last Answer : A. By a single slit

Description : In Fraunhofer diffraction, the incident wave front should be ….. A. elliptical B. Plane C. Spherical D. Cylindrical

Last Answer : B. Plane

Description : hat is the name of the process whereby waves travel around corners and obstacles in their paths? A. Reflection B. Refraction C Interference D. Diffraction

Last Answer : D. Diffraction

Description : The phenomenon of diffraction can be understood using A. Huygens principle B. Fraunhofer C. Uncertainty principle D. Fresnel

Last Answer : A. Huygens principle

Description : What is true for intensity of scattered light according to Rayleigh's law? A. The intensity for scattering for light of largest wavelength more B. The light of smallest wavelength will be scattered ... C. All the wavelengths are scattered equally D. Intensity of light is not affected by scattering

Last Answer : B. The light of smallest wavelength will be scattered more

Description : In reference with antireflection coating which of the following statement is true? A. Thickness of the film should be changed for light of same wavelength but different intensity B. Thickness of ... D. Thickness of the film should be decreased for light of same wavelength but higher intensity

Last Answer : B. Thickness of the film need not be changed for light of same wavelength but different intensity