X-ray diffraction can be observed by using __________. A. Diffraction Grating
B. Rock salt crystal
C. Convex lens
D. Michelson’s interferometer

1 Answer

Answer :

A. Diffraction Grating

Related questions

Description : The diffraction observed by diffraction grating can also be Termed as __________. A. Single slit diffraction B. double slit Diffraction C. multiple Slit Diffraction D. Fresnel’s Diffraction

Last Answer : A. Single slit diffraction

Description : significant diffraction of X ray can be obtained A. By a single slit B. By a double slit C. By diffraction D. By Atomic crystal

Last Answer : A. By a single slit

Description : .The grating used to observe, diffraction of visible light can have approximately __________. A.300 lines per cm B.3000 lines per cm, C. 15000 lines per cm D. 30 lines per cm

Last Answer : C. 15000 lines per cm

Description : In Fresnel diffraction A. source of light is kept at infinite distance from the aperture B. source of light is kept at finite distance from the aperture C. Convex lens used D. aperture width is selected so that it can acts as a point source

Last Answer : B. source of light is kept at finite distance from the aperture

Description : In plane transmission grating, the angle of diffraction for second order maxima for wavelength 5 x 10 -5 cm is 30 0. Calculate the number of lines in one centimeter of the grating surface. A. 1000 lines/cm B. 5000 lines/cm C. 500 lines/cm D. 10000 lines/cm

Last Answer : B. 5000 lines/cm

Description : What is the effect of increasing the number of slits on the intensity of Central maxima of diffraction pattern of a diffraction grating? A. Intensity of central maxima will decrease B. Intensity ... maxima will increase C. There will not be any effect D. Diffraction pattern will disappear

Last Answer : B. Intensity of central maxima will increase

Description : Fraunhofer diffraction at a Plane Grating What is the meaning of grating element for a diffraction grating? A It is the width of a single slit B. It is the width of the opaque space C. It is the distance between two slits D. It is the width of diffraction grating

Last Answer : C. It is the distance between two slits

Description : A diffraction grating is optically equivalent to a multiple slit system in which the number of slit , N is typically A.2000/cm B.3000/cm C.5000/cm D.1000/cm

Last Answer : C.5000/cm

Description : What is the highest order spectrum which may be seen with monochromatic light of wavelength 5000 A0by means of diffraction grating with 5000 lines/cm? A. 2 B. 4 C. 8 D. 16

Last Answer : B. 4

Description : Fraunhofer diffraction is observed when __________. A. Only screen is placed at finite distance B. source is placed at finite distance C. neither source nor screen is at finite distance D. None of these

Last Answer : D. None of these

Description : Fresnel’s type diffraction is observed when __________. A. Only screen is placed at finite distance B. Only source is placed at finite distance C. Both source and screen are at finite distance D. Neither source nor screen is at finite distance

Last Answer : C. Both source and screen are at finite distance

Description : In Michelson interferometer semi silvered mirror is used To obtain __________. A. Thin film interference B. Phase coherence C. mono chromatic light D. colored fringe

Last Answer : B. Phase coherence

Description : Diffraction due to circular aperture If a light passes through a small pinhole, and incident on a screen. What will be observed on the screen? A.A sharp bright point of the width equal to ... A bright ring at the centre surrounded by alternate dark and bright rings D. A diffused bright point

Last Answer : C. A bright ring at the centre surrounded by alternate dark and bright rings

Description : Second glass plate in Michelson ‘s Interferometer is known as A. Extra glass plate C. Simple Glass Plate B. Compensating glass plate D. None of these

Last Answer : B. Compensating glass plate

Description : In Michelson ‘s interferometer 100 fringes cross the field view when the movable mirror is displaced through 0.0248 mm. Calculate the wavelength of monochromatic light used A. 5896 A 0 B.5890 A 0 C.4000 A 0 D. 4890 A 0

Last Answer : B.5890

Description : Newton's rings are formed because of interference between the light Reflected from (a) Upper surface of Plano-convex lens and lower surface of plane glass plate (b) Lower surface of Plano-convex ... c) Lower and upper surface of Plano-convex (d) Lower and upper surfaces of plane glass plate

Last Answer : (b) Lower surface of Plano-convex lens and upper surface of plane glass plate

Description : Why in Newton's rings setup, the beam splitter (mirror) is kept at 450? (a) It allows light rays to incident at 450over the top surface of Plano convex lens (b) It allows light rays to ... Plano convex lens (d) It allows light rays to incident at 900over the top surface of Plano convex lens

Last Answer : (d) It allows light rays to incident at 900over the top surface of Plano convex lens

Description : In Newton’s rings experiment, if we reduce the radius of curvature of Plano Convex lens to zero, what will be effect on Newton’s rings? (a)They will become more bright (b)They will become more dark ( c)They will disappear (d) They will be more dense

Last Answer : ( c)They will disappear

Description : Newton's rings experiment is performed and radius (or diameter) is calculated. Now Plano-convex lens is replaced with another Plano-convex lens of greater Radius of curvature. What will be effect on radius ( ... ) will increase (c) Radius (or diameter) will decrease (d) There will be no effect

Last Answer : (b) Radius (or diameter) will increase

Description : In Newton’s rings experiment, if we reduce the radius of curvature of Plano convex lens to zero, what will be effect on Newton’s rings? A. They will become brighter B. They will become darker C. They will disappear D. They will be more dense

Last Answer : C. They will disappear

Description : In Newton's ring experiment, the diameter of the 15 th ring was found to be 0.590 and that of the 5 th ring was 0.336 cm. If the radius of Plano convex lens is 100 cm, compute the wavelength of light used. A. 5885 A 0 B. 5880 A o C. 5890 A o D.5850 A

Last Answer : B. 5880 A o

Description : Resolving power of grating is given by A. λ/2 B. λ/dλ C. dλ/λ D. none of these

Last Answer : B. λ/dλ

Description : Find the maximum value of resolving power of a grating 3 cm wide having 5000 lines per cm, if the wavelength of light used is 5890 A0. A. 40000 B. 45000 C. 4500 D. 5000

Last Answer : a option

Description : A grating has 6000 lines per cm. How many orders of light of wavelength 4500 A 0 can be seen? A. 1 B. 2 C. 3 D. 4

Last Answer : C. 3

Description : Diffraction is special type of __________. A. Reflection B. Refraction C. Interference D. Polarization

Last Answer : B. Refraction

Description : here are two types of diffraction Fresnel and __________. A. Michelson B. De Broglie C. Fraunhofer D. Huygens

Last Answer : C. Fraunhofer

Description : as the order increases, the width of a dark band in diffraction Patterns __________. A. Increases B. Decreases C. Does not change D. becomes infinity

Last Answer : Increases

Description : In Fraunhofer diffraction wave front used is __________. A. Spherical B. Circular C. Plane D. Conical 71.In diffraction pattern of monochromatic light the bright bands formed are __________. A. of uniform intensity B. of non-uniform intensity C. of uniform width D. is of different colors

Last Answer : A. of uniform intensity

Description : The phenomenon of diffraction can be understood using A. Huygens principle B. Fraunhofer C. Uncertainty principle D. Fresnel

Last Answer : A. Huygens principle

Description : Newton’s light illustrate the phenomenon of (a) Interference (b) Diffraction (c) Dispersion (d) Polarisation

Last Answer : (a) Interference

Description : Which of the following phenomenon produces colors in soap bubble? (a) Interference (b) Diffraction (c) Polarization (d) Dispersion

Last Answer : (a) Interference

Description : How the intensity of secondary maxima varies in case of Fraunhofer diffraction pattern for single slit? A. Intensity of secondary maxima decreases on either sides B. Intensity of ... C. Intensity increases and decreases alternately D. Intensity of secondary maxima increases on either sides

Last Answer : A. Intensity of secondary maxima decreases on either sides

Description : The condition for minima in Fraunhofer diffraction for single slit is asinθ = mλWhat is ‘θ’? A. Angle of incidence of incident rays at the slit B. Angle at which diffracted rays strikes the screen C. Angle between slit and screen D. Angle of diffraction at which rays are diffracted at slit

Last Answer : D. Angle of diffraction at which rays are diffracted at slit

Description : In Fraunhofer diffraction pattern for single slit, a central maximum is obtained when angle of diffraction q is equal to zero. What it actually indicates? A. All the diffracted rays are parallel and focused ... are diffracted by the slit in all the directions D. The rays are reflected by the slit

Last Answer : A. All the diffracted rays are parallel and focused by slit at a single point on screen

Description : Which of the following condition is essential for observing Fraunhofer diffraction? A. Source must be close to slit and screen should be at infinite distance B. Both source and screen must be close to ... infinity and screen should be close to the slit D. Both source and screen must be at infinity

Last Answer : D. Both source and screen must be at infinity

Description : On a rainy day, small oil films on water show brilliant colors'. This is due to A. dispersion B. interference C. diffraction D. Polarization 49.The critical angle for a beam of light ... A. absorbed B. totally reflected C. Partially reflected and partially transmitted D. Totally transmitted

Last Answer : C. Partially reflected and partially transmitted

Description : Colors in thin films are because of A. Dispersion C. Interference B. Compton effect D. Diffraction

Last Answer : C. Interference

Description : Which of the following does not support the wave nature of light A. Interference C. Polarisation B. Compton effect D. Diffraction

Last Answer : B. Compton effec

Description : To find prominent diffraction , the size of diffraction object should be A. greater than wavelength of light used B. comparable to order of wavelength of light C. less than wavelength of light used D. none of these.

Last Answer : B. comparable to order of wavelength of light

Description : The wave nature of light is demonstrated by which of the following? A. The photoelectric effect B. Color C. The speed of light D. Diffraction

Last Answer : D. Diffraction

Description : In Fraunhofer diffraction, the incident wave front should be ….. A. elliptical B. Plane C. Spherical D. Cylindrical

Last Answer : B. Plane

Description : hat is the name of the process whereby waves travel around corners and obstacles in their paths? A. Reflection B. Refraction C Interference D. Diffraction

Last Answer : D. Diffraction

Description : What is the nature of interference pattern for thin film of wedge shaped (a) Concave outside (b) Convex outside (b) Equally spaced (d) Concave inside

Last Answer : (b) Convex outside

Description : What is the nature of interference pattern for thin film of wedge shaped A. Concave outside B. Convex outside C. Equally spaced D. Concave inside

Last Answer : B. Convex outside

Description : .Light is A. an electromagnetic wave B. a form of energy visible to the human eye C. the same type of energy as an X ray D. the same type of energy as a radio wave E. all of the above

Last Answer : E. all of the above

Description : Interference pattern is observed in wedge-shaped film for monochromatic light. Now monochromatic light is replaced by white light. What will be the effect on interference pattern? (a) It will turn to dark (b) It will turn to bright (c) Bands will disappear (d) It will be a mixture of all colors

Last Answer : (d) It will be a mixture of all colors

Description : Interference pattern is observed in wedge-shaped film and bandwidth is noted. Now the angle of wedge is reduced to zero. What will be the effect on Bandwidth? (a) Bandwidth increases (b) Bandwidth decreases (c) Bands will disappear (d) There will not any effect

Last Answer : (c) Bands will disappear

Description : Interference pattern is observed in wedge-shaped film and bandwidth is noted. Now the angle of wedge is reduced. What will be the effect on bandwidth? (a) Bandwidth increases (b) Bandwidth decreases (c) Bands will disappear (d) There will not any effect

Last Answer : B) BANDWIDTH DECREASES

Description : Interference pattern is observed in wedge-shaped film and bandwidth is noted. Now the thin film is replaced by the film of higher refractive index. What will be the effect on bandwidth? (a) Bandwidth increases (b) Bandwidth decreases (c) Bands will merge (d) There will not any effect

Last Answer : (b) Bandwidth decreases

Description : A thin film is observed in white light. The color of the film seen at a particular point depends upon (a)Location of observer (b)Width of the source (c) Distance of the source (d) Brightness of the source

Last Answer : (a)Location of observer