Maximum deflection in a S.S. beam with W at centre will be   a.at the left hand support.
 b.at the right support.
 c.at the centre
 d. None.

1 Answer

Answer :

c.at the centre

Related questions

Description : Maximum deflection in a S.S beam with UDL w over the entire span will be a. at the left hand support. b.at the right support. c. at the centre. d.none.

Last Answer : c. at the centre.

Description : Maximum deflection in a cantilever beam with UDL w over the entire length will be a. At the free end. b. At the fixed end. c. At the centre d. None.

Last Answer : a. At the free end.

Description : Maximum deflection in a cantilever beam with W at the free end will be a. at the free end. b.at the fixed end. c.at the centre d.None.

Last Answer : a. at the free end.

Description : Deflection underthe load in a S.S beam with W not at the centre will be a.4Wa2b2/ 3EI l . b.2Wa2b2/3EIl. c.Wa2 b2/ 3EIL. d.None.

Last Answer : c.Wa2 b2/ 3EIL.

Description : Maximum slope in a S.S. beam with W at centre will be a.at the supports. b.at the centre c. In between the support and centre. d.None.

Last Answer : a.at the supports.

Description : A beam 3m long simply supported at its ends ,is carrying a point load W at the centre.If the slope at the ends of the beam should not exceed 10,find the deflection at the centre of beam? a.18.41 mm b.13.45 mm c.17.45 mm d.21.67 mm.

Last Answer : c.17.45 mm

Description : For a fixed beam with midpoint load point, maximum deflection at the centre is a.PL3/ 192EI b.PL2/ 48EI c.PL4/ 192EI d.PL3/ 48EI

Last Answer : a.PL3/ 192EI

Description : Maximum deflection in a S.S beam with UDL w over the entire span will be a. 3wl4 /584EI. b. 5wl4/384EI. C. 7wl4/384EI. d. None.

Last Answer : b. 5wl4/384EI.

Description : Maximum deflection in a cantilever beam with UDL w over the entire length will be a.wL4/4EI b.wL4/12EI C.wl4/ 8EI d.None.

Last Answer : C.wl4/ 8EI

Description : Maximum deflection in a cantilever beam with W at the free end will be a.WL3/6EI. b.WL3/2EI c.WL3/3EI d.None.

Last Answer : c.WL3/3EI

Description : Maximum slope in a S.S. beam with W at centre will be a.Wl2/ 16EI. b.Wl2/32EI. c.Wl2/48EI. d.None.

Last Answer : a.Wl2/ 16EI.

Description : Deflection of an off centre loaded fixed beam is a.Wa3 b3/ 3L3EI b.Wa3b3/ 8L3EI c.Wa3b3/ 192L3EI d.Wa3b3/ 384L3EI

Last Answer : a.Wa3 b3/ 3L3EI

Description : A simply supported beam carries a uniformly distributed load over the whole span.The deflection at the centre is y.If the distributed load per unit length is doubled and also depth of beam is doubled ,then the deflection at the centre would be a.2y b.4y c.y/2 d.y/4.

Last Answer : d.y/4.

Description : A simply supported beam is of rectangular section.It carries a uniformly distributed load over the whole span.The deflection at the centre is y.If the depth of beam is doubled ,the deflection at the centre would be a.2y b.4y c.y/2 d.y/8.

Last Answer : d.y/8.

Description : Maximum slope in a cantilever beam with UDL w over the entire length will be a. At the free end. b. At the fixed end. c. At the centre d. None.

Last Answer : a. At the free end.

Description : Maximum slope in a cantilever beam with W at the free end will be a.at the free end. b. at the centre c.at the fixed end. d.None.

Last Answer : a.at the free end.

Description : For a simply supported beam of span L, with point load W at the centre, the maximum B.M. will be (a) WL (b) WL/2 (c) WL/4 (d) WL/8

Last Answer : (c) WL/4

Description : For the same span and loads fixed beam in comparison with simply supported beams has a. lesser value of maximum deflection b. more value of maximum deflecction c.twice the value of maximum deflecction d.same value of maximum deflecction

Last Answer : a. lesser value of maximum deflection

Description : For a fixed beam with UDL, maximum deflection is a.wL4/48EI b.wL4/192EI c. wL4/384EI d.wL3/192EI

Last Answer : c. wL4/384EI

Description : A beam of uniform rectangular section 200 mm wide and 300mm deep is simply supported at its ends.It carries a uniformly distributed load of 9KN/m run over the entire span of 5m.If E=1×104 N/mm2, what is the maximum deflection? a.14.26 mm b.17.28 mm c.18.53 mm d.16.27 mm.

Last Answer : d.16.27 mm.

Description : A beam is designed on the basis of a. Maximum deflection. b.Minimum deflection c.Maximum slope d.None.

Last Answer : a. Maximum deflection.

Description : Which of the following statements is/are true for a simply supported beam? a. Deflection at supports in a simply supported beam is maximum. b.Deflection is maximum at a point where slope is zero . c. Slope is minimum at supports in a simply supported beam. d. All of the above

Last Answer : b.Deflection is maximum at a point where slope is zero .

Description : In cantilever beam the slope and deflection at the free end is ---------. a.zero b.maximum c.minimum d.none of above.

Last Answer : b.maximum

Description : A simply supported beam carries uniformly distributed load of 20 kN/m over the length of 5 m. If flexural rigidity is 30000 kN.m2, what is the maximum deflection in the beam? a. 5.4 mm b. 1.08 mm c. 6.2 mm d. 8.6 mm

Last Answer : a. 5.4 mm

Description : Maximum bending moment in a S.S. beam having a concentrated load at the centre will be (a) WL (b) WL/2 (c) WL/4 (d) None

Last Answer : (c) WL/4

Description : The shear force at the centre of a simply supported beam of span l carrying a uniformly distributed load of w per unit length over the whole span is (a) wl (b) wl/2 (c) wl/4 (d) Zero

Last Answer : (d) Zero

Description : A concentrated load P acts on a simply supported beam of span L at a distance L/3 from the left support. The bending moment at the point of application of the load is given by (a) PL/3 (b) 2PL/3 (c) PL/9 (d) 2PL/9

Last Answer : (d) 2PL/9

Description : When a simply supported beam is loaded with a point load at the centre, the maximum tensile stress is developed on the (a) Top fibre (b) Bottom fibre (c) Neutral axis (d) None of these

Last Answer : (b) Bottom fibre

Description : Maximum slope in a S.S beam with UDL w at the entire span will be a. wl3/ 16EI. b.wl3/ 24EI. c. wl3/ 48 EI. d.None

Last Answer : b.wl3/ 24EI.

Description : In continuous beam, the intermediate beams are subjected to a. some bending moment b. no bending moment c. no slope d.no deflection

Last Answer : a. some bending moment

Description : In continuous beam between intermediate supports the deflection is a. convex down b. convex up c. concave up d. concave down

Last Answer : b. convex up

Description : The vertical distance between the axis of the beam before and after loading at a point is called as _______ a. Deformation b. Deflection c. Slope d. None of above.

Last Answer : b. Deflection

Description : The design of a beam is based on strength criteria, if the beam is sufficiently strong to resist ----------------. a.Shear force b.deflection c. both a and b. d. none of the above.

Last Answer : a.Shear force

Description : Deflection of a simply supported beam when subjected to central point load is given as ________ a. (Wl /16 EI) b. (Wl2/16 EI) c. (Wl3/48 EI) d. (5Wl4/ 384EI)

Last Answer : c. (Wl3/48 EI)

Description : If a continuous beam is fixed on the right then the imaginary span is taken a.before the right end b. after the right end c. before the left end d. after the left end

Last Answer : b. after the right end

Description : In a simply supported beam carrying a uniformly distributed load over the left half span, the point of contraflexure will occur in (a) Left half span of the beam (b) Right half span of the beam. (c) Quarter points of the beam (d) Does not exist

Last Answer : (d) Does not exist

Description : According to I.S code in actual design , maximum permissible deflection is limited to -----------. a.(span/200) b.(span/325) c.(span /525) d.none of the above.

Last Answer : b.(span/325)

Description : Maximum slope in a cantilever beam with UDL w over the entire length will be a. wl3/9EI b. wl3/6EI c. wl3/3EI d. None.

Last Answer : b. wl3/6EI

Description : Maximum slope in a cantilever beam with W at the free end will be a.WL2/4EI b.WL2/8EI c.WL2/2EI d.None.

Last Answer : c.WL2/2EI

Description : In a simply supported beam subjected to uniformly distributed load (w) over the entire length (l), total load=W, maximum Bending moment is (a) Wl/8 or wl2/8 at the mid-point (b) Wl/8 or wl2/8 at the end (c) Wl/4 or wl2/4 (d) Wl/2

Last Answer : (a) Wl/8 or wl2/8 at the mid-point

Description : For a simply supported beam of span L, loaded with U.D.L. w/m over the whole span, the maximum B.M will be (a) wL/4 (b) wL2 /8 (c) wL2 /4 (d) WwL2 /2

Last Answer : (b) wL2

Description : Sinking of support effects the a. deflection at supports b. moments at supports c. fixity d. deformation at supports

Last Answer : b. moments at supports

Description : In a off centre point loaded fixed beam total moment is a. Wab / L b.Wab / 2L c. Wab / 3L

Last Answer : a. Wab / L

Description : In an off centre point loaded fixed beam the free bending moment diagram is a a.square b.rectangle c.triangle d.trapezium

Last Answer : c.triangle

Description : The concavity produced on the beam section about the centre line when downward force acts on it is called as (a) Hogging or positive bending moment (b) Hogging or negative bending moment (c) Sagging or positive bending moment (d) Sagging or negative bending moment

Last Answer : (b) Hogging or negative bending moment

Description : Maximum bending moment in a S.S. beam having a UDL over entire length will be (a) wL2/2 (b) wL2/4 (c) wL2/8 (d) None

Last Answer : (c) wL2/8

Description : Maximum deflection in a leaf spring is given by (a) 3WL3/4Enbt3 (b) 3WL3/8Enbt3 (c) 3WL3/16Enbt3 (d) None

Last Answer : (b) 3WL3/8Enbt3

Description : eaf springs are designed on the basis of (a) Maximum bending stresses (b) Maximum deflection (c) Maximum bending as well as maximum deflection (d) None

Last Answer : (c) Maximum bending as well as maximum deflection

Description : Initial gap between two turns of a close coil helical tension spring should be a. 0.5 mm b. based on the maximum deflection c. 1 mm d. zero

Last Answer : d. zero