The design of a beam is based on strength criteria, if the beam is sufficiently  strong to resist ----------------.
a.Shear force
b.deflection
 c. both a and b.
 d. none of the above.

1 Answer

Answer :

a.Shear force

Related questions

Description : Strength of a shaft a. Is equal to maximum shear stress in the shaft at the time of elastic failure b. Is equal to maximum shear stress in the shaft at the time of rupture c. Is equal to torsional rigidity d. Is ability to resist maximum twisting moment

Last Answer : d. Is ability to resist maximum twisting moment

Description : Most important features of any spring are (a) Deflection, stiffness and strength (b) Stiffness, bending and shear strengths (c) Strain energy, deflection and strength (d) None

Last Answer : (c) Strain energy, deflection and strength

Description : Most important features of any spring are (a) Deflection, stiffness and strength (b) Stiffness, bending and shear strengths (c) Strain energy, deflection and strength (d) None

Last Answer : (c) Strain energy, deflection and strength

Description : Deflection due to shear force as compared to bending moment will be a.equal b.less c.More d.None.

Last Answer : b.less

Description : The rate of change of bending moment is equal to (a) Shear force (b) Slope (c) Deflection (d) None of these

Last Answer : (a) Shear force

Description : A beam of uniform strength has a. same cross-section throughout the beam b. same bending stress at every section c. same bending moment at every section d. same shear stress at every section

Last Answer : b. same bending stress at every section

Description : When sinking is accounted in a continuous beam the shear force is a.modified b.same c.zero d.infinite

Last Answer : a.modified

Description : A beam is designed on the basis of a. Maximum bending moment b. Minimum shear force. c.Maximum bending moment as well as for maximum shear force d. None.

Last Answer : c.Maximum bending moment as well as for maximum shear force

Description : A beam of T-section is subjected to a shear force of F. The maximum shear force will occur at the a. top of the section b. bottom of the section c. neutral axis of the section d. junction of web and flange

Last Answer : c. neutral axis of the section

Description : What is the shear stress acting along the neutral axis of triangular beam section, with base 60 mm and height 150 mm, when shear force of 30 kN acts? a. 15.36 N/mm2 b. 10.6 N/mm2 c. 8.88 N/mm2 d. Insufficient data

Last Answer : c. 8.88 N/mm2

Description : Shear force in a beam is (a) Parallel to the length (b) Perpendicular to the length (c) Neither parallel nor perpendicular to the length (d) None

Last Answer : (b) Perpendicular to the length

Description : n case of a cantilever beam having concentrated loads, shear force variation will be (a) Linear (b) Parabolic (c) Cubic (d) None

Last Answer : (d) None

Description : In case of a cantilever beam having concentrated loads, shear force variation will be (a) Linear (b) Parabolic (c) Cubic (d) None

Last Answer : d) None

Description : In case of a cantilever beam, shear force at the fixed end will be (a) Maximum (b) Minimum (c) Zero (d) None

Last Answer : (a) Maximum

Description : The slope of shear force line at any section of the beam is also called (a) Bending moment at that section (b) Rate of loading at that section (c) Maximum Shear force (d) Maximum bending moment

Last Answer : (b) Rate of loading at that section

Description : For any part of a beam subjected to uniformly distributed load, Shear force diagram is (a) Horizontal straight line (b) Vertical straight line (c) Line inclined to x-axis (d) Parabola

Last Answer : (c) Line inclined to x-axis

Description : 7-For any part of the beam, between two concentrated load Shear force diagram is a (a) Horizontal straight line (b) Vertical straight line (c) Line inclined to x-axis (d) Parabola

Last Answer : Na

Description : The shear force at the centre of a simply supported beam of span l carrying a uniformly distributed load of w per unit length over the whole span is (a) wl (b) wl/2 (c) wl/4 (d) Zero

Last Answer : (d) Zero

Description : A cantilever beam of length of 2m carries a U.D.L. of 150 N/m over its whole span. The maximum shear force in the beam will be (a) 150 N (b) 300 N (c) 150 N-m (d) 600 N-m

Last Answer : (b) 300 N

Description : In continuous beam, the intermediate beams are subjected to a. some bending moment b. no bending moment c. no slope d.no deflection

Last Answer : a. some bending moment

Description : In continuous beam between intermediate supports the deflection is a. convex down b. convex up c. concave up d. concave down

Last Answer : b. convex up

Description : For the same span and loads fixed beam in comparison with simply supported beams has a. lesser value of maximum deflection b. more value of maximum deflecction c.twice the value of maximum deflecction d.same value of maximum deflecction

Last Answer : a. lesser value of maximum deflection

Description : Deflection of an off centre loaded fixed beam is a.Wa3 b3/ 3L3EI b.Wa3b3/ 8L3EI c.Wa3b3/ 192L3EI d.Wa3b3/ 384L3EI

Last Answer : a.Wa3 b3/ 3L3EI

Description : For a fixed beam with UDL, maximum deflection is a.wL4/48EI b.wL4/192EI c. wL4/384EI d.wL3/192EI

Last Answer : c. wL4/384EI

Description : For a fixed beam with midpoint load point, maximum deflection at the centre is a.PL3/ 192EI b.PL2/ 48EI c.PL4/ 192EI d.PL3/ 48EI

Last Answer : a.PL3/ 192EI

Description : A beam 3m long simply supported at its ends ,is carrying a point load W at the centre.If the slope at the ends of the beam should not exceed 10,find the deflection at the centre of beam? a.18.41 mm b.13.45 mm c.17.45 mm d.21.67 mm.

Last Answer : c.17.45 mm

Description : A beam of uniform rectangular section 200 mm wide and 300mm deep is simply supported at its ends.It carries a uniformly distributed load of 9KN/m run over the entire span of 5m.If E=1×104 N/mm2, what is the maximum deflection? a.14.26 mm b.17.28 mm c.18.53 mm d.16.27 mm.

Last Answer : d.16.27 mm.

Description : A simply supported beam carries a uniformly distributed load over the whole span.The deflection at the centre is y.If the distributed load per unit length is doubled and also depth of beam is doubled ,then the deflection at the centre would be a.2y b.4y c.y/2 d.y/4.

Last Answer : d.y/4.

Description : A simply supported beam is of rectangular section.It carries a uniformly distributed load over the whole span.The deflection at the centre is y.If the depth of beam is doubled ,the deflection at the centre would be a.2y b.4y c.y/2 d.y/8.

Last Answer : d.y/8.

Description : A beam is designed on the basis of a. Maximum deflection. b.Minimum deflection c.Maximum slope d.None.

Last Answer : a. Maximum deflection.

Description : Deflection underthe load in a S.S beam with W not at the centre will be a.4Wa2b2/ 3EI l . b.2Wa2b2/3EIl. c.Wa2 b2/ 3EIL. d.None.

Last Answer : c.Wa2 b2/ 3EIL.

Description : Maximum deflection in a cantilever beam with UDL w over the entire length will be a. At the free end. b. At the fixed end. c. At the centre d. None.

Last Answer : a. At the free end.

Description : Maximum deflection in a cantilever beam with UDL w over the entire length will be a.wL4/4EI b.wL4/12EI C.wl4/ 8EI d.None.

Last Answer : C.wl4/ 8EI

Description : Maximum deflection in a cantilever beam with W at the free end will be a. at the free end. b.at the fixed end. c.at the centre d.None.

Last Answer : a. at the free end.

Description : Maximum deflection in a cantilever beam with W at the free end will be a.WL3/6EI. b.WL3/2EI c.WL3/3EI d.None.

Last Answer : c.WL3/3EI

Description : Maximum deflection in a S.S beam with UDL w over the entire span will be a. at the left hand support. b.at the right support. c. at the centre. d.none.

Last Answer : c. at the centre.

Description : Maximum deflection in a S.S beam with UDL w over the entire span will be a. 3wl4 /584EI. b. 5wl4/384EI. C. 7wl4/384EI. d. None.

Last Answer : b. 5wl4/384EI.

Description : Maximum deflection in a S.S. beam with W at centre will be a.at the left hand support. b.at the right support. c.at the centre d. None.

Last Answer : c.at the centre

Description : The vertical distance between the axis of the beam before and after loading at a point is called as _______ a. Deformation b. Deflection c. Slope d. None of above.

Last Answer : b. Deflection

Description : Which of the following statements is/are true for a simply supported beam? a. Deflection at supports in a simply supported beam is maximum. b.Deflection is maximum at a point where slope is zero . c. Slope is minimum at supports in a simply supported beam. d. All of the above

Last Answer : b.Deflection is maximum at a point where slope is zero .

Description : Deflection of a simply supported beam when subjected to central point load is given as ________ a. (Wl /16 EI) b. (Wl2/16 EI) c. (Wl3/48 EI) d. (5Wl4/ 384EI)

Last Answer : c. (Wl3/48 EI)

Description : In cantilever beam the slope and deflection at the free end is ---------. a.zero b.maximum c.minimum d.none of above.

Last Answer : b.maximum

Description : A simply supported beam carries uniformly distributed load of 20 kN/m over the length of 5 m. If flexural rigidity is 30000 kN.m2, what is the maximum deflection in the beam? a. 5.4 mm b. 1.08 mm c. 6.2 mm d. 8.6 mm

Last Answer : a. 5.4 mm

Description : A beam is said to be of uniform strength, if (A) B.M. is same throughout the beam (B) Shear stress is same throughout the beam (C) Deflection is same throughout the beam (D) Bending stress is same at every section along its longitudinal axis

Last Answer : (D) Bending stress is same at every section along its longitudinal axis

Description : A beam is said to be of uniform strength, if (A) B.M. is same throughout the beam (B) Deflection is same throughout the beam (C) Bending stress is same throughout the beam (D) Shear stress is same throughout the beam

Last Answer : (C) Bending stress is same throughout the beam

Description : The criteria for the design of a shaft is the stress at (a) The external surface (b) The axis (c) Any inside layer (d) Any of these

Last Answer : (a) The external surface

Description : A spring is designed for (a) Higher strength (b) Higher deflection (c) Higher stiffness (d) None

Last Answer : (b) Higher deflection

Description : Keeping loading same but increasing the length, shear stresses in a beam will (a) Increase (b) Decrease (c) No change (d) None

Last Answer : (c) No change