It is caused by valence electrons in the silica material from which the fiber are manufactured. ∙ A. ion resonance absorption
∙ B. infrared absorption
∙ C. ultraviolet absorption
∙ D. visible light absorption

1 Answer

Answer :

ultraviolet absorption

Related questions

Description : An absorption loss caused by valence electrons in the silica material from which fibers are manufactured. A. Modal dispersion B. Infrared absorption C. Ion resonance absorption D. Ultraviolet absorption

Last Answer : D. Ultraviolet absorption

Description : It is caused by hydroxide ions in the material ∙ A. visible light absorption ∙ B. infrared absorption ∙ C. ultraviolet absorption ∙ D. ion resonance absorption

Last Answer : D. ion resonance absorption

Description : t is a result of photons of light that are absorbed by the atoms of the glass core molecule. ∙ A. ion resonance absorption ∙ B. infrared absorption ∙ C. ultraviolet absorption ∙ D. visible light absorption

Last Answer : B. infrared absorption

Description : ________ is the result of photons of light that are absorbed by the atoms of the glass core molecules ∙ a. Ion resonance absorption ∙ b. Ultraviolet absorption ∙ c. Infrared absorption ∙ d. Absorption loss

Last Answer : c. Infrared absorption

Description : Most fiber optic light sources emit light in which spectrum? ∙ A. visible ∙ B. infrared ∙ C. ultraviolet ∙ D. X-ray

Last Answer : B. infrared

Description : Most fiber-optic light sources emit light in which spectrum? ∙ a. Visible ∙ b. Infrared ∙ c. Ultraviolet ∙ d. X-ray

Last Answer : ∙ b. Infrared

Description : The band of light frequencies that are too low to be seen by the human eye ∙ A. Infrared ∙ B. X-rays ∙ C. Visible ∙ D. Ultraviolet

Last Answer : Ultraviolet

Description : The band of light frequencies to which human eye will respond ∙ A. Infrared ∙ B. Visible light ∙ C. Ultraviolet ∙ D. Cosmic ray

Last Answer : B. Visible light

Description : The band of light frequencies that are too high to be seen by the human eye. ∙ A. Ultraviolet ∙ B. Visible light ∙ C. Infrared ∙ D. Yellow

Last Answer : ∙ C. Infrared

Description : The band of light wavelengths that are too short to be seen by the human eye ∙ a. Amber ∙ b. Visible ∙ c. Infrared ∙ d. Ultraviolet

Last Answer : c. Infrared

Description : The band of light wavelengths that are too long to be seen by the human eye ∙ a. Amber ∙ b. Visible ∙ c. Infrared ∙ d. Ultraviolet

Last Answer : c. Infrared

Description : Which of the following is not a part of the optical spectrum? ∙ A. infrared ∙ B. ultraviolet ∙ C. visible color ∙ D. x-rays

Last Answer : ∙ D. x-rays

Description : It is caused by valence electrons in the silica material from which the fiber are manufactured.

Last Answer : ultraviolet absorption

Description : The dominant loss mechanisms in silica fiber are ∙ a. Absorption and radiation losses ∙ b. Absorption and Rayleigh scattering ∙ c. Coupling and radiation losses ∙ d. Radiation and modal dispersion

Last Answer : b. Absorption and Rayleigh scattering

Description : What generates a light beam of a specific visible frequency? ∙ a. Laser ∙ b. Maser ∙ c. Infrared ∙ d. Flashlight

Last Answer : ∙ a. Laser

Description : Which laser emits light in the visible range 400 to 700 nm? ∙ a. Argon-ion ∙ b. Nitrogen ∙ c. Carbon-dioxide ∙ d. Neodymium-YAG

Last Answer : a. Argon-ion

Description : Why are visible-light LEDs not used for fiber optics? ∙ a. It has high losses ∙ b. It has short wave ∙ c. It has low attenuation ∙ d. It has weak signal

Last Answer : ∙ a. It has high losses

Description : Which of the following is not part of the optical spectrum? ∙ a. Infrafed ∙ b. Ultraviolet ∙ c. Visible color ∙ d. X-rays

Last Answer : ∙ d. X-rays

Description : ______ dispersion is caused by the difference in the propagation times of light rays that take different paths down a fiber. ∙ a. Material dispersion ∙ b. Wavelength dispersion ∙ c. Modal dispersion

Last Answer : ∙ c. Modal dispersion

Description : The law that states “When visible light of high frequency electromagnetic radiation illuminates a metallic surface, electrons are emitted” is known as ____________. ∙ A. Einstein law of photon ∙ B. Marconi’s law ∙ C. Maxwell’s law ∙ D. Plank’s law

Last Answer : D. Plank’s law

Description : It is analogous to power dissipation to copper cables, impurities in the fiber absorb the light and covert it to heat. ∙ A. power loss ∙ B. absorption loss ∙ C. resistive loss ∙ D. heat loss

Last Answer : B. absorption loss

Description : The following are the cause of light attenuation in fiber optics except ∙ a. Backscattering ∙ b. Absorption ∙ c. Refraction ∙ d. Microbends

Last Answer : c. Refraction

Description : The loss in signal power as light travels down a fiber is called ∙ a. Dispersion ∙ b. Scattering ∙ c. Absorption ∙ d. Attenuation

Last Answer : ∙ d. Attenuation

Description : ____ is applied to protect core and cladding of the fiber ∙ a. Insulation ∙ b. Fiber insulation ∙ c. Silica ∙ d. Polymer jacket

Last Answer : d. Polymer jacket

Description : SONET stands for ∙ a. System Optical Network ∙ b. Synchronous Optical Network ∙ c. Silica Optic Network ∙ d. System Optical Fiber Net

Last Answer : ∙ b. Synchronous Optical Network

Description : In fiber optics, SCS stands for ∙ a. Suppressed-clad-silicon ∙ b. Silicon base-class-silica ∙ c. Silica-clad-silica ∙ d. Serial-clad-silicon

Last Answer : c. Silica-clad-silica

Description : In fiber optics, PCS stands for ∙ a. Plastic-clad-silica ∙ b. Polyethylene-clad-silica ∙ c. Personal carrier system ∙ d. Personal communication

Last Answer : ∙ a. Plastic-clad-silica

Description : Infrared range for fiber optics ∙ a. 400 – 700 nm ∙ b. 700 – 1200 nm ∙ c. 300 – 2000 nm ∙ d. 400 – 7000 nm

Last Answer : b. 700 – 1200 nm

Description : It is caused by the difference in the propagation time of light rays that take different paths down the fiber. ∙ A. modal dispersion ∙ B. microbending ∙ C. Rayleigh scattering ∙ D. chromatic dispersion

Last Answer : A. modal dispersion

Description : The operation of a fiber-optic cable is based on the principle of ∙ A. refraction ∙ B. reflection ∙ C. dispersion ∙ D. absorption

Last Answer : A. refraction

Description : The operation of the fiber-optic cable is based on the principle of ∙ a. Refraction ∙ b. Reflection ∙ c. Dispersion ∙ d. Absorption

Last Answer : ∙ b. Reflection

Description : Infrared light has a wavelength that is ∙ A. less than 400 nm ∙ B. more than 700 nm ∙ C. less than 700 nm ∙ D. a little over 400 nm

Last Answer : B. more than 700 nm

Description : In refraction that occurs in air/glass interfaces, among the visible light, which is the bent the least? ∙ A. violet ∙ B. blue ∙ C. red ∙ D. orange

Last Answer : C. red

Description : It is the science of measuring only light waves that are visible to the human eye. ∙ A. Radiometry ∙ B. Photometry ∙ C. Ophthalmology ∙ D. Optometry

Last Answer : B. Photometry

Description : ange of wavelength of visible light ∙ A. 670 nm to 10^3 nm ∙ B. 440 nm to 540 nm ∙ C. 110 nm to 240 nm ∙ D. 390 nm to 770 nm

Last Answer : D. 390 nm to 770 nm

Description : Which of the following colors is not found in the visible light wave spectrum? ∙ a. Red ∙ b. White ∙ c. Orange ∙ d. Yellow

Last Answer : b. White

Description : The wavelength of visible light extends from ∙ a. 0.8 to 1.0 nm ∙ b. 400 to 750 nm ∙ c. 200 to 660 nm ∙ d. 700 to 1200 nm

Last Answer : b. 400 to 750 nm

Description : These bends are caused by excessive pressure and tension and generally occur while fiber are bent during handling or installation. ∙ A. microbending ∙ B. macrobending ∙ C. constant-radius bending ∙ D. kinks

Last Answer : C. constant-radius bending

Description : Band loss is ∙ a. A reduction in transmitter power caused by earth’s surface curvature ∙ b. A reduction in strength of the signal caused by folded dipole bends ∙ c. An attenuation increase caused by bends radiating from the side of the fiber ∙ d. All of these

Last Answer : c. An attenuation increase caused by bends radiating from the side of the fiber

Description : The refractive index number is ∙ A. a number which compares the transparency of a material with that of air ∙ B. a number of assigned by the manufacturer to the fiber in question ∙ C. a number which determines the core diameter ∙ D. a term describing core elasticity

Last Answer : A. a number which compares the transparency of a material with that of air

Description : Which of the following is not a factor in cable light loss? ∙ A. reflection ∙ B. absorption ∙ C. scattering ∙ D. dispersion

Last Answer : A. reflection

Description : Results in reduction in the power of light wave as it travels down the cable. ∙ A. power loss ∙ B. absorption loss ∙ C. resistive loss ∙ D. heat loss

Last Answer : A. power loss

Description : EMD is best described by which statement? ∙ A. 70 percent of the core diameter and 70% of the fiber NA should be filled with light. ∙ B. 70 percent of the fiber diameter and 70% of the ... be measured at the output. ∙ D. 70 percent of the unwanted wavelengths should be attenuated by the fiber.

Last Answer : 70 percent of the core diameter and 70% of the fiber NA should be filled with light.

Description : A popular light wavelength fiber-optic cable is ∙ A. 0.7 micrometer ∙ B. 1.3 micrometer ∙ C. 1.5 micrometer ∙ D. 1.8 micrometer

Last Answer : B. 1.3 micrometer

Description : How can modal dispersion reduced entirely? ∙ A. Use a graded index fiber ∙ B. Use a single-mode fiber ∙ C. Use a monochromatic light source ∙ D. Use a very sensitive light detector

Last Answer : Use a single-mode fiber

Description : Chromatic dispersion can be eliminated by __________. ∙ A. using a monochromatic light source ∙ B. using a very small numerical aperture fiber ∙ C. using a graded-index fiber ∙ D. using a very sensitive photo detector

Last Answer : A. using a monochromatic light source

Description : Light rays that are emitted simultaneously from an LED and propagated down an optical fiber do not arrive at the far end of the fiber at the same time results to ∙ A. intramodal dispersion ∙ B. pulse length dispersion ∙ C. modal dispersion ∙ D. wavelength dispersion

Last Answer : D. wavelength dispersion

Description : More than one path for light rays to take down the fiber ∙ A. Multimode ∙ B. Step-index ∙ C. Single mode

Last Answer : A. Multimode