In general in the design of a section by limit method, it is assumed that
[ A ] the stress in steel to reach its yield limit before concrete failure
[ B ] the stress in concrete to reach its permissible limit before to reach yield stress in steel
[ C ] stresses in both concrete and steel reach their permissible values simultaneously
[ D ] none of the above are correct

1 Answer

Answer :

[ A ] the stress in steel to reach its yield limit before concrete failure

Related questions

Description : In general in the design of a section by limit method, it is assumed that [ A ] the stress in steel to reach its yield limit before concrete failure [ B ] the stress in concrete to ... in both concrete and steel reach their permissible values simultaneously [ D ] none of the above are correct

Last Answer : [ A ] the stress in steel to reach its yield limit before concrete failure

Description : If the depth of actual neutral axis is greater than the depth of critical neutral axis, then [ A ] Concrete attains its permissible stress earlier [ B ] Steel attains its permissible stress earlier [ C ] Both concrete and steel reaches its permissible stresses simultaneously [ D ] None of the above

Last Answer : [ A ] Concrete attains its permissible stress earlier

Description : The section of a reinforced beam where most distant concrete fibre in compression and tension in steel attains permissible stresses simultaneously, is called (A) Balanced section B) Economic section (C) Critical section (D) All the above

Last Answer : Answer: Option D

Description : In a beam section, if the steel reinforcement is of such a magnitude that the permissible stresses in concrete and steel are developed simultaneously, the section is. (a) Balanced section (b) Economical section (c) Critical section (d) All the above

Last Answer : (d) All the above

Description : The section of a reinforced beam where most distant concrete fiber in compression and tension in steel attains permissible stresses simultaneously is called (i)Balanced section (ii)Economic section (iii)Critical section [ A ] i [ B ] i and ii [ C ] i and iii [ D ] i, ii and iii

Last Answer : [ D ] i, ii and iii

Description : Regarding the working stress design of under reinforced concrete section, (a) The neutral axis depth will be greater than that of a balanced section. (b) The stress in steel intension will reach ... on the tension side is also be considered for calculating the moment of resistance of the section.

Last Answer : both b&c

Description : In a singly reinforced beam, if the stress in concrete reaches its allowable limit later than the steel reaches, its permissible value, the beam section is said to be (a) Under-reinforced section (b) Over-reinforced section (c) Critical section (d) Balanced section

Last Answer : (b) Over-reinforced section

Description : If the depth of actual neutral axis of a doubly reinforced beam (A) Is greater than the depth of critical neutral axis, the concrete attains its maximum stress earlier (B) Is less ... critical neutral axis; the concrete and steel attain their maximum stresses simultaneously (D) All the above

Last Answer : Answer: Option D

Description : Consider the following statements: Percentage of steel for balanced designed of a singly reinforced rectangular section by limit state method depends on (1) Characteristic strength of concrete (2) Yield strength of concrete (3) Modulus of elasticity ... (b) 1, 3 and 4 (c) 1, 2 and 4 (d) 1, 2 and 3

Last Answer : 1,2,4

Description : If permissible working stresses in steel and concrete are respectively 1400 kg/cm2 and 80 kg/cm2 and modular ratio is 18, in a beam reinforced in tension side and of width 30 cm and having effective depth 46 cm, the lever arms of the section, is (A) 37 cm (B) 38 cm (C) 39 cm (D) 40 cm

Last Answer : Answer: Option D

Description : A short column 20 cm 20 cm in section is reinforced with 4 bars whose area of cross section is 20 sq. cm. If permissible compressive stresses in concrete and steel are 40 kg/cm2 and 300 kg/cm2 , the Safe load on ... should not exceed (A) 4120 kg (B) 41,200 kg (C) 412,000 kg (D) None of these

Last Answer : Answer: Option B

Description : Consider the following salient points in a stress-strain curve of a mild steel bar: 1. Yield point 2. Braking point 3. Yield plateau 4 . Proportionality limit 5. Ultimate point The correct sequence in which they occur while testing the mild ... , 5 and 2 (c) 4, 1, 3, 5 and 2 (d) 1, 4, 2, 3 and 5

Last Answer : (c) 4, 1, 3, 5 and 2

Description : The section in which concrete is not fully stressed to its permissible value when stress in steel reaches its maximum value is (a) Under-reinforced section (b) Over-reinforced section (c) Critical section (d) Balanced section

Last Answer : (a) Under-reinforced section

Description : The concrete is assumed to reach failure with a compression strain of [ A ] 0.002 [ B ] 0.0035 [ C ] 0.0045 [ D ] 0.006

Last Answer : [ B ] 0.0035

Description : The concrete is assumed to reach failure with a compression strain of [ A ] 0.002 [ B ] 0.0035 [ C ] 0.0045 [ D ] 0.006

Last Answer : [ B ] 0.0035

Description : If a concrete column 200 200 mm in cross-section is reinforced with four steel bars of 1200  mm2  total cross-sectional area. Calculate the safe load for the column if permissible stress in  concrete is 5 N/mm2 ... 15 Ec (A) 264 MN  (B) 274 MN  (C) 284 MN  (D) 294 MN 

Last Answer : (C) 284 MN 

Description : In a singly reinforced beam, if the permissible stress in concrete reaches earlier than that in steel, the beam section is called (A) Under-reinforced section (B) Over reinforced section (C) Economic section (D) Critical section

Last Answer : Answer: Option B

Description : If the permissible stress in steel in tension is 140 N/mm², then the depth of neutral axis for a singly reinforced rectangular balanced section will be (A) 0.35 d (B) 0.40 d (C) 0.45 d (D) Dependent on grade of concrete also

Last Answer : Answer: Option B

Description : In a singly reinforced beam, if the permissible stress in steel reaches earlier than that of concrete, the beam section as called [ A ] Under reinforced section [ B ] Over reinforced section [ C ] Balanced section [ D ] Critical section

Last Answer : [ A ] Under reinforced section

Description : In a Singly reinforced beam, if the permissible stress in concrete reaches earlier than that in steel, the beam section is called [ A ] Under reinforced section [ B ] Over reinforced section [ C ] Balanced section [ D ] Critical section

Last Answer : [ B ] Over reinforced section

Description : In a singly reinforced beam (A) Compression is borne entirely by concrete (B) Steel possesses initial stresses when embedded in concrete (C) Plane sections transverse to the centre line ... Elastic moduli for concrete and steel have different values within the limits of deformation of the beam

Last Answer : Answer: Option C

Description : If the permissible compressive and tensile stresses in a singly reinforced beam are 50 kg/cm2 and 1400 kg/cm2 respectively and the modular ratio is 18, the percentage area At of the steel required for an economic section, is (A) 0.496 % (B) 0.596 % (C) 0.696 % (D) 0.796 %

Last Answer : Answer: Option C

Description : In working stress method of design, permissible compressive bending stress for M20 grade concrete is given by [ A ] 5.0 N/mm2 [ B ] 7.0 N/mm2 [ C ] 10.0 N/mm2 [ D ] 20 N/mm2

Last Answer : [ B ] 7.0 N/mm2

Description : As per IS;456, in working stress method of design, permissible tensile stress for M20 grade concrete is given by [ A ] 1. 2 N/mm2 [ B ] 1.5 N/mm2 [ C ] 2.0 N/mm2 [ D ] 2.8 N/mm2

Last Answer : [ D ] 2.8 N/mm2

Description : The application of elastic theory to the beams is based on the assumption that (a) At any cross-section, plane sections before bending remain plane after bending (b) All tensile stresses are taken ... reinforcement is free from initial stresses when it is embedded in concrete. (d) All of the above

Last Answer : (d) All of the above

Description : Which of the following stresses is used for identifying the quality of structural steel? (A) Ultimate stress (B) Yield stress (C) Proof stress (D) None of the above

Last Answer : Answer: Option B

Description : In an over-reinforced section (a) Steel reinforcement is not fully stressed to its permissible value (b) Concrete is not fully stressed to its permissible value (c) Either (a) and (b) (d) Both (a) and (b)

Last Answer : (a) Steel reinforcement is not fully stressed to its permissible value

Description : As per IS: 1139, permissible stress in compression steel reinforcement for High Yield strength deformed bars is [ A ] 140 N/mm2 [ B ] 190 N/mm2 [ C ] 230 N/mm2 [ D ] 415 N/mm2

Last Answer : [ B ] 190 N/mm2

Description : Pick up the assumption for the design of a pre-stressed concrete member from the following: (A) A transverse plane section remains a plane after bending (B) During deformation limits, Hook's ... of stress in reinforcement due to changes in external loading is negligible (D) All the above

Last Answer : Answer: Option D

Description : Select the incorrect statement from the following In eccentrically loaded columns, [ A ] The tensile strength of concrete is ignored [ B ] Design stress - strain curve for steel in compression is the ... different points in the section will be same [ D ] Plane section remain plane even after bending

Last Answer : [ C ] The strain at different points in the section will be same

Description : Examine the following statements: (i) Factor of safety for steel should be based on its yield stress, (ii) Factor of safety for steel should be based on its ultimate stress, (iii) Factor of safety for concrete should be based on ... (iii) (B) (i) and (iv) (C) (ii) and (iii) (D) (ii) and (iv

Last Answer : Answer: Option B

Description : The longitudinal shearing stresses acting on the surface between the steel and concrete are called. (a) Bond stress (b) Tensile stresses (c) Compressive stresses (d) None of these

Last Answer : (a) Bond stress

Description : In Limit state method of design, the factor of safety for concrete and steel respectively are [ A ] 3.00 and 1.80 [ B ] 1.50 and 1.18 [ C ] 1.50 and 1.15 [ D ] 1.50 and 1.50

Last Answer : [ C ] 1.50 and 1.15

Description : In a limit state method of design, when shear reinforcement is not provided, the calculated shear stress at the critical section of a slab shall not exceed; [ A ] Ks 0.25 v fck [ B ] ks 0.20 v fck [ C ] ks 0.16 v fck [ D ] ks 0.10 v fck

Last Answer : [ A ] Ks 0.25 v fck

Description : Interior thickness of concrete road slab for design wheel load 6300 kg and permissible flexural stress 21 kg/cm2 , is (A) 17.0 cm (B) 25.5 cm (C) 34.0 cm (D) 42.5 cm

Last Answer : Answer: Option B

Description : When the nominal shear stress is less than permissible shear stress in concrete then [ A ] Provide minimum shear reinforcement [ B ] No shear reinforcement is necessary [ C ] Provide design shear reinforcement [ D ] None of the above

Last Answer : [ A ] Provide minimum shear reinforcement

Description : When shear stress exceeds the permissible limit in a slab, then it is reduced by (A) Increasing the depth (B) Providing shear reinforcement (C) Using high strength steel (D) Using thinner bars but more in number

Last Answer : Answer: Option A

Description : Working stress method of design results in -------------- percentages of compression steel than that of a limit state method of design [ A ] Equal [ B ] Larger [ C ] Smaller [ D ] Half of the

Last Answer : [ B ] Larger

Description : What will happen if stresses induced due to surge in the spring exceeds the endurance limit stress of the spring. a) Fatigue Failure b) Fracture c) None of the listed d) Nipping

Last Answer : a) Fatigue Failure

Description : What will happen if stresses induced due to surge in the spring exceeds the endurance limit stress of the spring. (a) Fatigue Failure (b) Fracture (c) None of the listed (d) Nipping

Last Answer : (a) Fatigue Failure

Description : In working stress method of design, the factor of safety for concrete and steel respectively are [ A ] 3.0 and 1.8 [ B ] 3.0 and 1.18 [ C ] 3.0 and 1.15 [ D ] 1.5 and 1.5

Last Answer : [ A ] 3.0 and 1.8

Description : To predict failure in design components which failure criteria is not assumed, when mean stress and stress amplitude are nonzero? a. Goodman criterion b. Soderberg criteria c. Gerber criteria d. None of the above

Last Answer : d. None of the above

Description : Area of steel required per metre width of pavement for a length of 20 m for design wheel load 6300 kg and permissible stress in steel 1400 kg/cm2 , is (A) 70 kg/sq cm (B) 80 kg/sq cm (C) 90 kg/sq cm (D) 100 kg/sq cm

Last Answer : Answer: Option C

Description : As per IS: 456, permissible bond stress for plain bars in tension, in working stress method, where M20, is the grade of concrete [ A ] 0.6 N/mm2 [ B ] 0.8 N/mm2 [ C ] 1.0 N/mm2 [ D ] 1.2 N/mm2

Last Answer : [ B ] 0.8 N/mm2

Description : As per IS: 456, permissible direct compressive stress M20 grade concrete in working stress method of designer [ A ] 5.0 N/mm2 [ B ] 7.0 N/mm2 [ C ] 10.0 N/mm2 [ D ] 20.0 N/mm2

Last Answer : [ A ] 5.0 N/mm2

Description : Select incorrect statement from the following. In the Virtual work method, it is generally assumed that [ A ] Elastic deformations in the slab are negligible [ B ] Plastic deformations in the slab are negligible [ C ] Plastic deformations takes place at the yield lines [ D ] Both (a) and (b)

Last Answer : [ B ] Plastic deformations in the slab are negligible

Description : The most critical consideration in the design of a rolled steel column carrying axial loads is the (a) Percentage elongation at yield and the net cross-sectional area (b) Critical bending ... at ultimate load (d) Compressive strength based on slenderness ratio and gross cross-sectional area.

Last Answer : (d) Compressive strength based on slenderness ratio and gross cross-sectional area.

Description : The design yield stress of steel according to IS: 4561978 is: (A) 0.37 fy (B) 0.57 fy (C) 0.67 fy (D) 0.87 fy Where fy is the characteristic yield strength of steel

Last Answer : Answer: Option D

Description : Design yield stress for steel in tension and compression is [ A ] 0.65 fy [ B ] 0.87 fy [ C ] 0.75 fy [ D ] None of the above

Last Answer : [ B ] 0.87 fy

Description : Design yield stress for steel in tension and compression is [ A ] 0.65 fy [ B ] 0.87 fy [ C ] 0.75 fy [ D ] None of the above

Last Answer : [ B ] 0.87 fy