What Law states that the pressure
of gas is inversely proportional to its
volume at constant temperature?
 a. Charles’ law
 b. Gay-Lussac’s Law
 c. Boyle’s Law
 d. Dalton’s Law

1 Answer

Answer :

Boyle’s Law

Related questions

Description : The volume of a gas under constant pressure increases or decrease with temperature.  a. Gay- Lussac’s Law  b. Ideal Gas Law  c. Charles’ Law  d. Boyle’s Law

Last Answer : Charles’ Law

Description : “If the temperature o f a fixed quantity of a gas is held constant during a change of state, the volume varies inversely with the absolute pressure.  a. Charle’s Law  b. Boyle’s Law  c. Dalton’s Law  d. Amagat’s Law

Last Answer : Boyle’s Law

Description : A law relating the pressure, temperature and volume of an ideal gas  a. Gay-Lussac’s Law  b. Ideal gas Law  c. Charles’ Law  d. Boyle’s Law

Last Answer : Ideal gas Law

Description : “At constant pressure, the volume of a gas is inversely proportional to the pressure”. This is known as ______.  A. Boyle’s Law  B. Charles’s Law  C. Gay-Lussac Law  D. Ideal gas law

Last Answer : Boyle’s Law

Description : The volume of a confined gas is held constant, the pressure is directly proportional to the absolute temperature.  a. Charle’s Law  b. Boyle’s Law  c. Joule’s Law  d. Specific Heat

Last Answer : Boyle’s Law

Description : The pressure of the confined gas is held constant, the volume directly proportional to the absolute temperature.  a. Charle’s Law  b. Boyle’s Law  c. Zeroth Law  d. Gas Law

Last Answer : Charle’s Law

Description : According to which law, all perfect gases change in volume by l/273th of their original volume at 0°C for every 1°C change in temperature when pressure remains constant  (a) Joule’s law  (b) Boyle’s law  (c) Regnault’s law  (d) Gay-Lussac law  (e) Charles’ law.

Last Answer : Answer : e

Description : The volume of a gas is directly proportional to the number of molecules of the gas.  a. Ideal gas law  b. Boyle-Mariotte Law  c. Avogadro’s Hypothesis  d. Gay-Lussac’s Law of combining Volumes

Last Answer : Avogadro’s Hypothesis

Description : The absolute pressure of a given mass of a perfect gas varies inversely as its volume, when the temperature remains constant. This statement is known as Charles’ law.  A. Yes  B. No

Last Answer : Answer: B

Description : Which law states that the specific heat of a gas remains constant at all temperatures and pressures  (a) Charles’ Law  (b) Joule’s Law  (c) Regnault’s Law  (d) Boyle’s Law  (e) there is no such law.

Last Answer : Answer : c

Description : The behaviour of a perfect gas, undergoing any change in the variables which control physical properties, is governed by  A. Boyle’s law  B. Charles’ law  C. Gay-Lussac law  D. all of these

Last Answer : Answer: D

Description : According to Avogadro's law, for a given pressure and temperature, each molecule of a gas  (a) occupies volume proportional to its molecular weight  (b) occupies volume proportional to its specific ...  (d) occupies volume inversely proportional to its specific weight  (e) occupies same volume.

Last Answer : Answer : e

Description : Which law states that the internal energy of a gas is a function of temperature  (a) Charles’ law  (b) Joule’s law  (c) Regnault’s law  (d) Boyle’s law  (e) there is no such law.

Last Answer : Answer : b

Description : For a perfect gas, according to Boyle’s law (where p = Absolute pressure, v = Volume, and T = Absolute temperature)  A. p v = constant, if T is kept constant  B. v/T = constant, if p is kept constant  C. p/T = constant, if v is kept constant  D. T/p = constant, if v is kept constant

Last Answer : Answer: A

Description : The hyperbolic process is governed by  A. Boyle’s law  B. Charles’ law  C. Gay-Lussac law  D. Avogadro’s law

Last Answer : Answer: A

Description : An isothermal process is governed by  A. Boyle’s law  B. Charles’ law  C. Gay-Lussac law  D. Avogadro’s law

Last Answer : Answer: A

Description : The Law of Thermodynamics that provides the basis for measuring the thermodynamic property of temperature.  a. Charle’s Law  b. Boyle’s Law  c. Zeroth Law  d. Gas Law

Last Answer : Zeroth Law

Description : Boyle's law states that A. pressure of a gas is inversely proportional to its volume i.e. P V = constant B. pressure of a gas is directly proportional to its volume i.e. P⁄V = constant C. ... of a gas is directly proportional to the square of its volume i.e. P ⁄ V² = constant

Last Answer : pressure of a gas is inversely proportional to its volume i.e. P × V = constant

Description : According to Gay-Lussac law, the absolute pressure of a given mass of a perfect gas varies __________ as its absolute temperature, when the volume remains constant.  A. directly  B. indirectly

Last Answer : Answer: A

Description : According to Gay-Lussac law for a perfect gas, the absolute pressure of given mass varies directly as  (a) temperature  (b) absolute  (c) absolute temperature, if volume is kept constant ... , if temperature is kept constant  (e) remains constant,if volume and temperature are kept constant.

Last Answer : Answer : c

Description : p1V1= p2V2  a. Charle's Law  b. Boyle's Law  c. Ideal Gas Law  d. Joule's Law

Last Answer : Boyle's Law

Description : According to Avogadro’s law, the density of any two gases is __________ their molecular masses, if the gases are at the same temperature and pressure.  A. equal to  B. directly proportional to  C. inversely proportional to

Last Answer : Answer: B

Description : Which of the following laws is applicable for the behavior of a perfect gas  (a) Boyle’s law  (b) Charles’law  (c) Gay-Lussac law  (d) all of the above  (e) Joule’s law.

Last Answer : Answer : d

Description : What gas thermometer is based on the principle that at low pressure, the temperature of a gas is proportional to its pressure at constant volume?  A. Constant-pressure gas thermometer  B. Isobaric gas thermometer  C. Isometric gas thermometer  D. Constant-volume gas thermometer

Last Answer : Constant-volume gas thermometer

Description : The statement that molecular weights of all gases occupy the same volume is known as  (a) Avogadro’s hypothesis  (b) Dalton’s law  (c) Gas law  (d) Law of thermodynamics  (e) Joule’s law.

Last Answer : Answer : a

Description : The acceleration of a particular body is directly proportional to the resultant force acting on it & inversely proportional to its mass.  a. Pascal's Law  b. Joule's Law  c. Newton's Law  d. None of the above

Last Answer : Newton's Law

Description : Boyle’s law i.e. pV = constant is applicable to gases under  (a) all ranges of pressures  (b) only small range of pressures  (c) high range of pressures  (d) steady change of pressures  (e) atmospheric conditions.

Last Answer : Answer : b

Description : The volume of an ideal gas is directly proportional to its  a. pressure  b. Celsius temperature  c. Kelvin temperature  d. Fahrenheit temperature

Last Answer : Kelvin temperature

Description : According to Dalton's law, the total pres sure of the mixture of gases is equal to  (a) greater of the partial pressures of all  (b) average of the partial pressures of all  (c) sum ... all  (d) sum of the partial pressures of all divided by average molecular weight  (e) atmospheric pressure.

Last Answer : Answer : c

Description : What law predicts the dew point of moisture in the fuel gas?  A. Dalton’s law  B. Law of Dulong and Petit  C. Ringelman law  D. Amagat’s law

Last Answer : Dalton’s law

Description : What type of pressure cannot be used for Boyle’s Law?  a. Atmospheric Pressure  b. Gauge Pressure  c. Surface Pressure  d. Isobaric Pressure

Last Answer : Gauge Pressure

Description : According to Gay-Lussac law for a perfect gas, p/T = constant, if v is kept constant.  A. True  B. False

Last Answer : Answer: A

Description : The constant temperature, the product of pressure and volume of a given amount of a gas is constant . This is ______. (1) Gay-Lussac law (2) Charles’s law (3) Boyle’s law (4) Pressure law

Last Answer : (3) Boyle’s law Explanation: Boyle's law is a gas law, stating that the pressure and volume of a gas have an inverse relationship, when temperature is held constant. If volume increases, then pressure decreases and vice versa when temperature is held constant.

Description : Addition of heat at constant pressure to a gas results in  (a) raising its temperature  (b) raising its pressure  (c) raising its volume  (d) raising its temperature and doing external work  (e) doing external work.

Last Answer : Answer : d

Description : A perfect gas at 27°C is heated at constant pressure till its volume is double. The final temperature is  (a) 54°C  (b) 327°C  (c) 108°C  (d) 654°C  (e) 600°C

Last Answer : Answer : b

Description : A gas having a volume of100 ft³ at 27ºC is expanded to 120 ft³by heated at constant pressure to what temperature has it been heated to have this new volume?  a. 87°C  b. 85°C  c. 76°C  d. 97°C t2= T2–T1

Last Answer : 87°C

Description : An ideal gas is maintained at constant temperature. If the pressure on the gas is doubled, the volume is  a. increased fourfold  b. doubled  c. reduced by half  d. decreased by a quarter

Last Answer : reduced by half

Description : The gas in a constant gas thermometer cooled to absolute zero would have _________.  a. no volume  b. no pressure  c. zero temperature at all scales  d. none of the above

Last Answer : no pressure

Description : The temperatures of the ideal gas temperature scale are measured by using a ______.  A. Constant-volume gas thermometer  B. Constant-mass gas thermometer  C. Constant-temperature gas thermometer  D. Constant-pressure gas thermometer

Last Answer : Constant-volume gas thermometer

Description : The heat supplied to the gaS at constant volume is (where m = Mass of gas, cv = Specific heat at constant volume, cp = Specific heat at constant pressure, T2 – T1 = Rise in temperature, and R = Gas constant)  A. mR(T2 – T1)  B. mcv(T2 – T1)  C. mcp(T2 – T1)  D. mcp(T2 + T1)

Last Answer : Answer: B

Description : The specific heat at constant volume is  A. the amount of heat required to raise the temperature of unit mass of gas through one degree, at constant pressure  B. the amount of heat required to raise ... to raise the temperature of 1 kg of water through one degree  D. any one of the above

Last Answer : Answer: B

Description : The amount of heat required to raise the temperature of the unit mass of gas through one degree at constant volume, is called  A.specific heat at constant volume  B.specific heat at constant pressure  C.kilo Joule  D.none of these

Last Answer : Answer: A

Description : According to Avogadro's Hypothesis  (a) the molecular weights of all the perfect gases occupy the same volume under same conditions of pressure and temperature  (b) the sum of partial pressure of ... gases have two values of specific heat  (e) all systems can be regarded as closed systems.

Last Answer : Answer : a

Description : At Equilibrium, the radiation emitted must equal the radiation absorbed.  a. Boyle’s Law  b. Planck’s Law  c. Kirchoff’s Law  d. Joule’s Law

Last Answer : Kirchoff’s Law

Description : According to Avogadro's law  A. the product of the gas constant and the molecular mass of an ideal gas is constant  B. the sum of partial pressure of the mixture of two gases is sum of the ... all gases, at the same temperature and pressure, contain equal number of molecules  D. all of the above

Last Answer : Answer: C

Description : Wavelength corresponding to the maximum energy is inversely proportional to the absolute temperature. This is __________ law. (A) Stefan's (B) Dalton's (C) Wien's (D) Kirchoff’s

Last Answer : (C) Wien's

Description : As we heat a gas at constant pressure, its volume  a. increases  b. decreases  c. stays the same  d. none of the above

Last Answer : increases

Description : For a body cooling in a draft, the rate of heat loss is proportional to the difference in temperature between the body and its surroundings.  a. Nemst Effect  b. Caloric Theory  c. Joule’s Law  d. Newton’s Law of Cooling

Last Answer : Newton’s Law of Cooling

Description : The volume of the gas held at constant pressure increases 4 cm² at 0°C to 5cm². What is the final pressure?  a. 68.65ºC  b. 68.25ºC  c. 70.01°C  d. 79.1ºC t2= T2–T1

Last Answer : 981 N

Description : Gas is enclosed in a cylinder with a weighted piston as the stop boundary. The gas is heated and expands from a volume of 0.04 m^3 to 0.10 m^3 at a constant pressure of 200kPa.Calculate the work done by the system.  A. 8 kJ  B. 10 kJ  C.12 kJ  D.14 kJ Formula: W = p(V2-V1)

Last Answer : 12 kJ