An ideal gas as compared to a real gas at very high pressure occupies
 (a) more volume
 (b) less volume
 (c) same volume
 (d) unpredictable behaviour
 (e) no such correlation.

1 Answer

Answer :

Answer : a

Related questions

Description : According to Avogadro's law, for a given pressure and temperature, each molecule of a gas  (a) occupies volume proportional to its molecular weight  (b) occupies volume proportional to its specific ...  (d) occupies volume inversely proportional to its specific weight  (e) occupies same volume.

Last Answer : Answer : e

Description : In an isothermal process, the internal energy of gas molecules  (a) increases  (b) decreases  (c) remains constant  (d) may increase/decrease depending on the properties of gas  (e) shows unpredictable behaviour.

Last Answer : Answer : c

Description : The ideal efficiency of a Brayton cycle with regeneration, with increase in pressure ratio will  (a) increase  (b) decrease  (c) remain unchanged  (d) increase/decrease depending on ap-plication  (e) unpredictable. “

Last Answer : Answer : b

Description : Which of the following statements is TRUE for an ideal gas, but not for a real gas?  A. PV = nRT  B. An increase in temperature causes an increase in the kinetic energy of the gas  C. The ... same as the volume of the gas as a whole  D. No attractive forces exists between the molecule of a gas

Last Answer : PV = nRT

Description : According to Avogadro's Hypothesis  (a) the molecular weights of all the perfect gases occupy the same volume under same conditions of pressure and temperature  (b) the sum of partial pressure of ... gases have two values of specific heat  (e) all systems can be regarded as closed systems.

Last Answer : Answer : a

Description : The volume of a gas under constant pressure increases or decrease with temperature.  a. Gay- Lussac’s Law  b. Ideal Gas Law  c. Charles’ Law  d. Boyle’s Law

Last Answer : Charles’ Law

Description : A law relating the pressure, temperature and volume of an ideal gas  a. Gay-Lussac’s Law  b. Ideal gas Law  c. Charles’ Law  d. Boyle’s Law

Last Answer : Ideal gas Law

Description : If the initial volume of an ideal gas is compressed to one-half its original volume and to twice its original temperature, the pressure:  a. doubles  b. halves  c. quadruples  d. triples

Last Answer : quadruples

Description : An ideal gas of volume 1liter and pressure 10 bar undergoes a quasistatic adiabatic expansion until the pressure drops to 1 bar. Assume γ to be 1.4 what is the final volume?  a. 3.18 l  b. 4.18 l  c. 5.18 l  d. 6.18 l

Last Answer : 5.18 l

Description : If air is at pressure, p, of 3200 lbf/ft2 , and at a temperature, T, of 800 ˚R, what is the specific volume, v? (R=5303 ft-lbf/lbm-˚R, and air can be modeled as an ideal gas.)  A.9.8 ft^3/lbm  B.11.2 ft^3/lbm  C.13.33 ft^3/lbm  D.14.2 ft^3/lbm Formula: pv = RT v = RT / p

Last Answer : 13.33 ft^3/lbm

Description : An ideal gas is maintained at constant temperature. If the pressure on the gas is doubled, the volume is  a. increased fourfold  b. doubled  c. reduced by half  d. decreased by a quarter

Last Answer : reduced by half

Description : The volume of an ideal gas is directly proportional to its  a. pressure  b. Celsius temperature  c. Kelvin temperature  d. Fahrenheit temperature

Last Answer : Kelvin temperature

Description : “At constant pressure, the volume of a gas is inversely proportional to the pressure”. This is known as ______.  A. Boyle’s Law  B. Charles’s Law  C. Gay-Lussac Law  D. Ideal gas law

Last Answer : Boyle’s Law

Description : The temperatures of the ideal gas temperature scale are measured by using a ______.  A. Constant-volume gas thermometer  B. Constant-mass gas thermometer  C. Constant-temperature gas thermometer  D. Constant-pressure gas thermometer

Last Answer : Constant-volume gas thermometer

Description : The pressure exerted by an ideal gas is __________ of the kinetic energy of all the molecules contained in a unit volume of gas.  A.one-half  B.one-third  C.two-third  D.three-fourth

Last Answer : Answer: C

Description : Oxygen at 15ºC and 10.3 Mpa gauge pressure occupies 600L. What is the occupied by the oxygen at 8.28 Mpa gauge pressure and 35ºC?  a. 789.32 L  b. 796.32 L  c. 699 L  d. 588 L V2= P1V1/T1P2

Last Answer : 796.32 L

Description : The volume of a gas is directly proportional to the number of molecules of the gas.  a. Ideal gas law  b. Boyle-Mariotte Law  c. Avogadro’s Hypothesis  d. Gay-Lussac’s Law of combining Volumes

Last Answer : Avogadro’s Hypothesis

Description : 3.0 lbm of air are contained at 25 psia and 100 ˚F. Given that Rair = 53.35 ft-lbf/lbm- ˚F, what is the volume of the container?  A.10.7 ft^3  B.14.7 ft^3  C.15 ft^3  D.24.9 ft^3 Formula: use the ideal gas law pV = mRT T = (100 +460) ˚R V = mRT/p

Last Answer : 24.9 ft^3

Description : According to Avogadro's law  A. the product of the gas constant and the molecular mass of an ideal gas is constant  B. the sum of partial pressure of the mixture of two gases is sum of the ... all gases, at the same temperature and pressure, contain equal number of molecules  D. all of the above

Last Answer : Answer: C

Description : What are the assumptions of the kinetic gas theory?  A. Gas molecules do not attract each other  B. The volume of the gas molecules is negligible compared to the volume of the gas  C. The molecules behave like hard spheres  D. All of the above

Last Answer : All of the above

Description : To what conditions does a gas behave like an ideal gas?  a. low temperature and low pressure  b. low temperature and high pressure  c. high temperature and low pressure  d. high temperature and high pressure

Last Answer : high temperature and low pressure

Description : The compressibility factor, x, is used for predicting the behavior of nonideal gases. How is the compressibility ty factor defined relative to an ideal gas? (subscript c refers to critical value)  A. ... compressibility factor, x, is an dimensionless constant given by pV=zRT. Therefore z = pV / RT

Last Answer : z = pV/ RT

Description : For reversible adiabatic process, change in entropy is  (a) maximum  (b) minimum  (c) zero  (d) unpredictable  (e) negative

Last Answer : Answer : c

Description : If both Stirling and Carnot cycles operate within the same temperature limits, then efficiency of Stirling cycle as compared to Carnot cycle  (a) more  (b) less  (c) equal  (d) depends on other factors  (e) none of the above.

Last Answer : Answer : c

Description : The molecular number density of an ideal gas at standard temperature and pressure in cm3  a. Froude number  b. Loschmidt number  c. Mach number  d. Reynold number

Last Answer : Loschmidt number

Description : What mass of nitrogen is contained in a10 ft3 vessel at a pressure of 840atm and 820°R? Make a computation by using ideal gas equation.  a. 194lb  b. 214lb  c. 394 lb  d. 413lb formula: m=pV /RT

Last Answer : 394 lb

Description : An ideal gas at 45psig and 80ºF is heated in the close container to 130ºF. What is the final pressure?  a. 65.10 psi  b. 65.11 psi  c. 65.23 psi  d. 61.16 psi P1V1/T1= P2V2/T2;V = Constant

Last Answer : 65.23 psi

Description : As we heat a gas at constant pressure, its volume  a. increases  b. decreases  c. stays the same  d. none of the above

Last Answer : increases

Description : The behaviour of a perfect gas, undergoing any change in the variables which control physical properties, is governed by  A. Boyle’s law  B. Charles’ law  C. Gay-Lussac law  D. all of these

Last Answer : Answer: D

Description : The gas in a constant gas thermometer cooled to absolute zero would have _________.  a. no volume  b. no pressure  c. zero temperature at all scales  d. none of the above

Last Answer : no pressure

Description : The absolute pressure of a given mass of a perfect gas varies inversely as its volume, when the temperature remains constant. This statement is known as Charles’ law.  A. Yes  B. No

Last Answer : Answer: B

Description : If a gas vapour is allowed to expand through a very minute aperture, then such a process is known as  (a) free expansion  (b) hyperbolic expansion  (c) adiabatic expansion  (d) parabolic expansion  (e) throttling.

Last Answer : Answer : e

Description : The value of specific heat at constant pressure (cp) is __________ that of at constant volume (cv).  A. less than  B. equal to  C. more than

Last Answer : Answer: C

Description : Gas turbine cycle consists of  (a) two isothermals and two isentropics  (b) two isentropics and two constant volumes  (c) two isentropics, one constant volume and one constant pressure  (d) two isentropics and two constant pressures  (e) none of the above.

Last Answer : Answer : d

Description : Addition of heat at constant pressure to a gas results in  (a) raising its temperature  (b) raising its pressure  (c) raising its volume  (d) raising its temperature and doing external work  (e) doing external work.

Last Answer : Answer : d

Description : Universal gas constant is defined as equal to product of the molecular weight of the gas and  (a) specific heat at constant pressure  (b) specific heat at constant volume  (c) ratio of two specific heats  (d) gas constant  (e) unity.

Last Answer : Answer : d

Description : A perfect gas at 27°C is heated at constant pressure till its volume is double. The final temperature is  (a) 54°C  (b) 327°C  (c) 108°C  (d) 654°C  (e) 600°C

Last Answer : Answer : b

Description : If a gas is heated against a pressure, keeping the volume constant, then work done will be equal to  (a) + v  (b) – ve  (c) zero  (d) pressure x volume  (e) any where between zero and infinity.

Last Answer : Answer : c

Description : According to kinetic theory of gases, the absolute zero temperature is attained when  (a) volume of the gas is zero  (b) pressure of the gas is zero  (c) kinetic energy of the molecules is zero  (d) specific heat of gas is zero  (e) mass is zero.

Last Answer : Answer : c

Description : According to Gay-Lussac law for a perfect gas, the absolute pressure of given mass varies directly as  (a) temperature  (b) absolute  (c) absolute temperature, if volume is kept constant ... , if temperature is kept constant  (e) remains constant,if volume and temperature are kept constant.

Last Answer : Answer : c

Description : Which of the following variables controls the physical properties of a perfect gas  (a) pressure  (b) temperature  (c) volume  (d) all of the above  (e) atomic mass.

Last Answer : Answer : d

Description : An ideal gas is compressed in a cylinder so well insulated that there is essentially no heat transfer. The temperature of gas  a. Remains constant  b. increases  c. decreases  d. is basically zero

Last Answer : increases

Description : The ratio of specific heat at constant pressure (Cp) and specific heat at constant volume (cv) is  A. equal to one  B. less than one  C. greater than one  D. none of these

Last Answer : Answer: C

Description : A gas is compressed in a cylinder by a movable piston to a volume onehalf its original volume. During the process 300 kJ heat left the gas and internal energy remained same. The work done on gas in Nm will be  (a) 300 Nm  (b) 300,000 Nm  (c) 30 Nm  (d) 3000 Nm  (e) 30,000 Nm.

Last Answer : Answer : b

Description : The statement that molecular weights of all gases occupy the same volume is known as  (a) Avogadro’s hypothesis  (b) Dalton’s law  (c) Gas law  (d) Law of thermodynamics  (e) Joule’s law.

Last Answer : Answer : a

Description : The same volume of all gases would represent their  (a) densities  (b) specific weights  (c) molecular weights  (d) gas characteristic constants  (e) specific gravities.

Last Answer : Answer : c

Description : What Law states that the pressure of gas is inversely proportional to its volume at constant temperature?  a. Charles’ law  b. Gay-Lussac’s Law  c. Boyle’s Law  d. Dalton’s Law

Last Answer : Boyle’s Law

Description : The volume of a confined gas is held constant, the pressure is directly proportional to the absolute temperature.  a. Charle’s Law  b. Boyle’s Law  c. Joule’s Law  d. Specific Heat

Last Answer : Boyle’s Law

Description : The pressure of the confined gas is held constant, the volume directly proportional to the absolute temperature.  a. Charle’s Law  b. Boyle’s Law  c. Zeroth Law  d. Gas Law

Last Answer : Charle’s Law

Description : “If the temperature o f a fixed quantity of a gas is held constant during a change of state, the volume varies inversely with the absolute pressure.  a. Charle’s Law  b. Boyle’s Law  c. Dalton’s Law  d. Amagat’s Law

Last Answer : Boyle’s Law