The energy associated with individual molecules in a gas, liquid or solid.  a. Specific Energy  b. Molecular Energy  c. Internal Energy  d. Phase Energy

1 Answer

Answer :

Internal Energy

Related questions

Description : The pressure of the vapor phase of a substance that is in equilibrium with the liquid or solid phase.  a. Phase Pressure  b. Equilibrium Vapor Pressure  c. Specific Pressure  d. Equilibrium Phase Pressure

Last Answer : Equilibrium Vapor Pressure

Description : What refers to the portion of the internal energy of a system associated with the kinetic energies of the molecules?  A. Translational energy  B. Spin energy  C. Rotational kinetic energy  D. Sensible energy

Last Answer : Sensible energy

Description : _________ is the transition of a given substance from the solid to the gas phase with no intermediate liquid stage.  a. Convection  b. Conduction  c. Radiation  d. Sublimation

Last Answer : Sublimation

Description : What is the internal energy associated with the atomic bonds in a molecule called?  A. Chemical energy  B. Latent energy  C. Phase energy  D. State energy

Last Answer : Chemical energy

Description : What is the internal energy associated with the phase of a system called?  A. Chemical energy  B. Latent energy  C. Phase energy  D. Thermal energy

Last Answer : Latent energy

Description : According to Avogadro's law  A. the product of the gas constant and the molecular mass of an ideal gas is constant  B. the sum of partial pressure of the mixture of two gases is sum of the ... all gases, at the same temperature and pressure, contain equal number of molecules  D. all of the above

Last Answer : Answer: C

Description : In an isothermal process, the internal energy of gas molecules  (a) increases  (b) decreases  (c) remains constant  (d) may increase/decrease depending on the properties of gas  (e) shows unpredictable behaviour.

Last Answer : Answer : c

Description : According to kinetic theory of gases, the absolute zero temperature is attained when  (a) volume of the gas is zero  (b) pressure of the gas is zero  (c) kinetic energy of the molecules is zero  (d) specific heat of gas is zero  (e) mass is zero.

Last Answer : Answer : c

Description : The phase transition of a liquid to a solid  a. Solidification  b. Freezing  c. Fusion  d. All of these

Last Answer : All of these

Description : What is the unique state at which solid, liquid and gaseous phase can go co-exist in equilibrium?  a. Triple point  b. Critical point  c. Boiling point  d. Pour point

Last Answer : Triple point

Description : What type of system energy is related to the molecular structure of a system?  A. Macroscopic form of energy  B. Microscopic form of energy  C. Internal energy  D. External energy

Last Answer : Microscopic form of energy

Description : Universal gas constant is defined as equal to product of the molecular weight of the gas and  (a) specific heat at constant pressure  (b) specific heat at constant volume  (c) ratio of two specific heats  (d) gas constant  (e) unity.

Last Answer : Answer : d

Description : According to Avogadro's law, for a given pressure and temperature, each molecule of a gas  (a) occupies volume proportional to its molecular weight  (b) occupies volume proportional to its specific ...  (d) occupies volume inversely proportional to its specific weight  (e) occupies same volume.

Last Answer : Answer : e

Description : According to Avogadro's Hypothesis  (a) the molecular weights of all the perfect gases occupy the same volume under same conditions of pressure and temperature  (b) the sum of partial pressure of ... gases have two values of specific heat  (e) all systems can be regarded as closed systems.

Last Answer : Answer : a

Description : The same volume of all gases would represent their  (a) densities  (b) specific weights  (c) molecular weights  (d) gas characteristic constants  (e) specific gravities.

Last Answer : Answer : c

Description : _________ is the energy stored within a body or substance by virtue of the activity and configuration of its molecules.  a. Internal Energy  b. External Energy  c. Kinetic Energy  d. Potential Energy

Last Answer : Internal Energy

Description : The sum of energies of all the molecules in a system, energies that appear in several complex forms.  a. External Energy  b. Internal Energy  c. Kinetic Energy  d. None of the above

Last Answer : Internal Energy

Description : _________ the very small KE still present in molecules at absolute zero temperature.  a. internal KE  b. Atomic kinetic energy  c. Zero-Point Energy  d. Subliminal Energy

Last Answer : Zero-Point Energy

Description : What is the heat capacity of one gram of a substance?  A. Molecular heat  B. Specific heat  C. Latent heat  D. Molar heat

Last Answer : Specific heat

Description : What is the heat capacity of one mole of substance?  A. Molecular heat  B. Specific heat  C. Latent heat  D. Molar heat

Last Answer : Molar heat

Description : To convert volumetric analysis to gravimetric analysis, the relative volume of each constituent of the flue gases is  (a) divided by its molecular weight  (b) multiplied by its molecular weight  (c) ... by its density  (d) multiplied by its specific weight  (e) divided by its specific weight.

Last Answer : Answer : b

Description : Sum of the internal energy of a substance and the product of pressure and volume.  a. Specific Heat  b. Specific Gravity  c. Isolated System  d. Enthalpy

Last Answer : Enthalpy

Description : Steam at 1000 lbf/ft^2 pressure and 300˚R has specific volume of 6.5 ft^3/lbm and a specific enthalpy of 9800 lbf-ft/lbm. Find the internal energy per pound mass of steam.  A.2500 lbf-ft/lbm  B.3300 lbf-ft/lbm  C.5400 lbf-ft/lbm  D.6900 lbf-ft/lbm Formula: h= u+ pV u= h– pV

Last Answer : 3300 lbf-ft/lbm

Description : The sum of all the microscopic form of energy is called _____.  A. Total energy  B. Internal energy  C. System energy  D. Phase energy

Last Answer : Internal energy

Description : A 10m^3 vessel initially contains 5 m^3 of liquid water and 5 m^3 of saturated water vapor at 100 kPa. Calculate the internal energy of the system using the steam table.  A. 5 x10^5 kJ  B. 8x10^5 kJ  C. 1 ... 3 kJ/kg ug= 2506kJ/kg formula: Mvap = V vap/vg M liq = Vliq/ vƒ u =uƒM liq + ug M vap

Last Answer : 2 x10^6 kJ

Description : What is the extremely large amount of energy associated with the strong bonds within the nucleus of the atom itself called?  A. Chemical energy  B. Latent energy  C. Phase energy  D. Nuclear energy

Last Answer : Nuclear energy

Description : Which of the following statements is TRUE for an ideal gas, but not for a real gas?  A. PV = nRT  B. An increase in temperature causes an increase in the kinetic energy of the gas  C. The ... same as the volume of the gas as a whole  D. No attractive forces exists between the molecule of a gas

Last Answer : PV = nRT

Description : The molecules of a gas moving through space with some velocity possesses what kind of energy?  A. Translational energy  B. Spin energy  C. Rotational kinetic energy  D. Sensible energy

Last Answer : Translational energy

Description : The kinetic energy of molecules of a gas becomes zero at absolute zero temperature.  A. Agree  B. Disagree

Last Answer : Answer: A

Description : The pressure exerted by an ideal gas is __________ of the kinetic energy of all the molecules contained in a unit volume of gas.  A.one-half  B.one-third  C.two-third  D.three-fourth

Last Answer : Answer: C

Description : Temperature of a gas is produced due to  (a) its heating value  (b) kinetic energy of molecules  (c) repulsion of molecules  (d) attraction of molecules  (e) surface tension of molecules.

Last Answer : Answer : b

Description : The amount of heat energy per kilogram that must be added or removed when a substance changes from one phase to another.  a. specific heat  b. heat of expansion  c. latent heat  d. useful heat

Last Answer : latent heat

Description : The changing of solid directly to vapor without passing through liquid state is called  a. Evaporation  b. Vaporization  c. Sublimation  d. Condensation

Last Answer : Sublimation

Description : Fuels that may classified conveniently in solid, liquid and gaseous.  a. Unleaded fuel  b. Diesel fuel  c. Fossil fuel  d. All of the above

Last Answer : Fossil fuel

Description : What is defined as the direct conversion of a substance from the solid to the vapor state or vice versa without passing the liquid state?  A. Condensation  B. Vaporization  C. Sublimation  D. Cryogenation

Last Answer : Sublimation

Description : What is the amount of heat needed to turn 1 kg of the substance at its melting point from the solid to liquid state?  A. Heat of fusion  B. Heat of vaporation  C. Heat of condensation  D. Heat of fission

Last Answer : Heat of fusion

Description : Liquid fuels have higher calorific value than solid fuels.  A. Yes  B. No

Last Answer : Answer: A

Description : Liquid fuels have lower efficiency than solid fuels.  A. True  B. False

Last Answer : Answer: B

Description : Which of the following statement is incorrect?  A. The liquid fuels consist of hydrocarbons.  B. The liquid fuels have higher calorific value than solid fuels.  C. The solid fuels have higher calorific value than liquid fuels.  D. A good fuel should have low ignition point.

Last Answer : Answer: C

Description : The molecular number density of an ideal gas at standard temperature and pressure in cm3  a. Froude number  b. Loschmidt number  c. Mach number  d. Reynold number

Last Answer : Loschmidt number

Description : Which of the following gas has a minimum molecular mass?  A. Oxygen  B. Nitrogen  C. Hydrogen  D. Methane

Last Answer : Answer: C

Description : The universal gas constant of a gas is the product of molecular mass of the gas and the gas constant.  A. Correct  B. Incorrect

Last Answer : Answer: A

Description : Molecular volume of any perfect gas at 600 x 103 N/m2 and 27°C will be  (a) 4.17m3/kgmol  (b) 400 m3/kg mol  (c) 0.15 m3/kg mol  (d) 41.7 m3/kg mol  (e) 417m3/kgmol.

Last Answer : Answer : a

Description : The value of the product of molecular weight and the gas characteristic constant for all the gases in S.I. units is  (a) 29.27 J/kmol°K  (b) 83.14J/kmol°K  (c) 848J/kmol°K  (d) All J/kmol °K  (e) 735 J/kmol °K.

Last Answer : Answer : b

Description : The value of the product of molecular weight and the gas characteristic constant for all the gases in M.K.S. unit is  (a) 29.27 kgfm/mol°K  (b) 8314kgfm/mol°K  (c) 848kgfm/mol°K  (d) 427kgfm/mol°K  (e) 735 kgfm/mol°K.

Last Answer : Answer : c

Description : The statement that molecular weights of all gases occupy the same volume is known as  (a) Avogadro’s hypothesis  (b) Dalton’s law  (c) Gas law  (d) Law of thermodynamics  (e) Joule’s law.

Last Answer : Answer : a

Description : Is a general name, without specific meaning unless the way in which it is measured or define by the context.  a. Natural Value  b. Heating Value  c. Burning Value  d. Internal Value

Last Answer : Heating Value

Description : The heat Q per unit mass per degree change in temperature that must be supplied or removed to change the temperature of a substance.  a. Specific Heat Capacity  b. Latent Heat  c. Heat of Transformation  d. Internal Heat

Last Answer : Specific Heat Capacity

Description : Entropy is the measure of:  a. The internal energy of a gas  b. The heat capacity of a substance  c. Randomness or disorder  d. The change of enthalpy of a system

Last Answer : Randomness or disorder

Description : Find the change in internal energy of 5 lb. of oxygen gas when the temperature changes from 100 ˚F to 120 ˚F. CV = 0.157 BTU/lbm-˚R  A.14.7 BTU  B.15.7 BTU  C. 16.8 BTU  D. 15.9 BTU Formula: U= mcv T

Last Answer : 15.7 BTU