What is the amount of radiant energy received each second over each square meter that is at right angles to the sun’s rays at the top of the atmosphere?
 a. 1400 J
 b. 6000 J
 c. 10000 J
 d. 800 J

1 Answer

Answer :

1400 J

Related questions

Description : If a system absorbs 500 cal of heat at the same time does 400J of work, find the change in internal energy of the system.  a. 1400 J  b. 1700 J  c. 1900 J  d. 1500 J

Last Answer : 1700 J

Description : It is the deposition of radiant energy as heat into an absorbing body.  a. Radiation  b. Ionization  c. Convection  d. Insolation

Last Answer : Insolation

Description : It is an energy flux, equal to the rate of energy flow per unit area per unit time across some surface.  a. Irradiance  b. Radiant Intensity  c. Luminosity  d. Brightness

Last Answer : Luminosity

Description : A bayabas falls from a branch 5m above the ground with what speed in meter per second does it strike the ground assume g = 10m/s².  a. 11m/s  b. 12m/s  c. 13m/s  d. 10m/s ∫KE = mV2/2gc

Last Answer : 10m/s

Description : Utilizing the answer to the previous problem, estimate the overall or average increase in temperature ( ΔT) of the concrete roof from the energy absorbed from the sun during a12hour day. Assume that all of the radiation absorbed goes into ... °C  b. 8.9°C  c. 9.9°C  d. 10.9°C formula: ΔQ = m c ΔT

Last Answer : 7.9 °C

Description : In the above problem, find the potential energy of the mass with respect to datum. (Formula: P = mgz/k )  a. 4875 j  b. 0.51 j  c. 0.46 j  d. None of the above

Last Answer : 4875 j

Description : Kinetic energy of the molecules in terms of absolute temperature (T) is proportional to  (a) T  (b) j  (c) J2  (d) Vr  (e) 1/Vr.

Last Answer : Answer : a

Description : Calculate: a. Mass flow rate in lb/hr. b. The velocity at section 2 in fps  a. 800,000lb/hr;625ft/s  b. 900,000lb/hr;625 ft/s  c. 888,000lb/hr;269 ft/s  d. 700,000lb/hr;269 ft/s m = A1V!/V1

Last Answer : 900,000 lb/hr;625 ft/s

Description : What horse power is required to isothermally compress 800 ft^3 of Air per minute from 14.7 psia to 120 psia?  A. 28 hp  B.108 hp  C.256 hp  D.13900 hp Formula: W= p1V1 ln (p1/p2) Power = dW / dt

Last Answer : 108 hp

Description : What is the resulting pressure when one pound of air at 15 psia and 200 ˚F is heated at constant volume to 800 ˚F?  A.15 psia  B. 28.6 psia  C. 36.4 psia.  D. 52.1 psia Formula : T1/p1 = T2/p2 p2= p1T2 / T1

Last Answer : 28.6 psia

Description : If air is at pressure, p, of 3200 lbf/ft2 , and at a temperature, T, of 800 ˚R, what is the specific volume, v? (R=5303 ft-lbf/lbm-˚R, and air can be modeled as an ideal gas.)  A.9.8 ft^3/lbm  B.11.2 ft^3/lbm  C.13.33 ft^3/lbm  D.14.2 ft^3/lbm Formula: pv = RT v = RT / p

Last Answer : 13.33 ft^3/lbm

Description : The concrete roof of a house is 10 m by 8 m and 10 cm thick (4"). Estimate the total heat the roof would absorb over the 12 day?  a. 1.3 x 108 J  b 2.3 x 108 J  c. 3.3 x 108 J  d. 4.3 x 108 J formula: ΔQ = ΔQ/Δtx Δt

Last Answer : 1.3 x 108 J

Description : If any external pressure is applied to a confined fluid, the pressure will be increased at every point in the fluid by the amount of the external pressure is known as _________.  a. Torricelli’s law  b. Barometric law  c. Newton’s Second law  d. Pascal’s law

Last Answer : Pascal’s law

Description : The SI unit of pressure  a. Pa  b. N  c. J  d. None of the above

Last Answer : Pa

Description : Two thick slices of bread, when completely oxidized by the body, can supply 200,000 cal of heat. How much work is this equivalent to?  a) 4,190,000 joules  b) 8,390,000 joules  c) 839, ... d) 419 000 joules Formula: J =Work/Heat J = mechanical equivalent of heat whose value is 4.19 joules/calorie

Last Answer : 419 000 joules

Description : How many joules of work is the equivalent of 15000 cal of heat?  a) 62850 joules  b) 3579.95 joules  c) 14995.81 joules  d) 15004.19 joules Formula: J =Work/Heat J = mechanical equivalent of heat whose value is 4.19 joules/calorie

Last Answer : 62850 joules

Description : A perfect gas has a value of R= 319.2 J/ kf.K and k= 1.26. If 120 kJ are added to 2.27 kf\g of this gas at constant pressure when the initial temp is 32.2°C? Find T2.  a. 339.4 K  b. 449.4 K  c. 559.4K  d. 669.4K formula: cp = kR/ k-1 Q= mcp(T2-T1)

Last Answer : 339.4 K

Description : Find ∫ for steam at 100 psia and 600°F.If h = 1329.6 and v = 6.216  a. 1214 Btu / lb  b. 1234 Btu /lb  c. 1342 Btu / lb  d. 1324 Btu /lb formula: ∫ = h– pv/ J

Last Answer : 1214Btu / lb

Description : The value for the ΔU of a system is -120 J. If the system is known to have absorbed 420 J of heat, how much work was done?  a. -540 J  b. -640 J  c. -740 J  d. -840 J formula: ΔU = q +w

Last Answer : -540 J

Description : For a certain gas R = 320 J/kg.K and cv= 0.84kJ/kg.K. Find k?  a. 1.36  b. 1.37  c. 1.38  d. 1.39 formula: k= R / cv+1

Last Answer : 1.38

Description : Let a closed system execute a state change for which the heat is Q = 100 J and work is W = -25 J. Find E. ∆ (Formula: E = Q- W) ∆  a. 125 J  b. 123 J  c. 126 J  d. None of the above

Last Answer : 125 J

Description : There are 1.36 kg of gas, for which R = 377 J/kg.k and k = 1.25, that undergo a nonflow constant volume process from p1 = 551.6 kPa and t1 = 60°C to p2 = 1655 kPa. During the process the gas is internally stirred and ... (Formula: T2= T1p2/ p1)  a. 999 K  b. 888 K  c. 456 K  d. One of the above

Last Answer : 999 K

Description : Twenty grams of ice at 0˚C melts to water at 0˚C. How much does the entropy of the 20g change in this process?  a. 30.5 J/K  b. 24.6 J/K  c. 21.3 J/K  d. 15.7 J/K

Last Answer : 24.6 J/K

Description : What is the SI unit of specific heat capacity?  A. J/kg  B. J/kg °F ∙  C. J/kg °C ∙  D. J/°C

Last Answer : J/kg °C

Description : What is the specific heat capacity of water in J/kg °C? ∙  A. 4581  B. 4185  C. 4518  D. 4815

Last Answer : 4185

Description : The value of gas constant (R) in S. I. units is  A. 0.287 J/kgK  B. 2.87 J/kgK  C. 28.7 J/kgK  D. 287 J/kgK

Last Answer : Answer: D

Description : The value of the product of molecular weight and the gas characteristic constant for all the gases in S.I. units is  (a) 29.27 J/kmol°K  (b) 83.14J/kmol°K  (c) 848J/kmol°K  (d) All J/kmol °K  (e) 735 J/kmol °K.

Last Answer : Answer : b

Description : Water flow to a terminal 3 mm diameter and has an average speed of 2 m/s. What is the rate of flow in cubic meter/mm?  a. 0.0001m³/min  b. 0.076 m³/min  c. 0.085 m³/min  d. 0.097 m³/min

Last Answer : 0.085 m³/min

Description : A vessel with a volume of cubic meter contains liquid water and water vapor ion equilibrium at 600 kPa. The liquid water has mass of1kg. Using the steam table, calculate the mass of the water vapor.  A. 0.99kg  B. 1.57 kg  C ... / kg vg = 0.3157 m^3 / kg Vtot = mƒ vƒ + mg vg mg = (tot-mƒ vƒ) / vg

Last Answer : 3.16 kg

Description : Entropy is measured in ______.  A. Joule/Kelvin  B. Joule-Meter/Kelvin  C. Meter/Kelvin  D. Newton/Kelvin

Last Answer : Joule/Kelvin

Description : The unit of length in S.I. units is  (a) meter  (b) centimeter  (c) kilometer  (d) millimeter.

Last Answer : Answer : a

Description : If two systems are in the thermal equilibrium with a third system, then they must be in thermal equilibrium with each other.  a. Zeroth Law of Thermodynamics  b. First Law of Thermodynamics  c. Second Law of Thermodynamics  d. Third Law of Thermodynamics

Last Answer : Zeroth Law of Thermodynamics

Description : What states that if two bodies are in thermal equilibrium with a third body, they are also in equilibrium with each other?  A. Zeroth law of thermodynamics  B. First law of thermodynamics  C. Second law of thermodynamics  D. Third law of thermodynamics

Last Answer : Zeroth law of thermodynamics

Description : When two bodies are in thermal equilibrium with a third body, they are also in thermal equilibrium with each other. This statement is called  A. Zeroth law of thermodynamics  B. First law of thermodynamics  C. Second law of thermodynamics  D. Kelvin Planck’s law

Last Answer : A. Zeroth law of thermodynamics

Description : Instrument used to measure the absolute pressure of the atmosphere  a. galvanometer  b. thermometer  c. barometer  d. pressure gages

Last Answer : barometer

Description : Which of the following is standard temperature and pressure (STP)?  A. 0 degree Celsius and one atmosphere  B. 32 degree Fahrenheit and zero pressure  C. 0 degree Kelvin and one atmosphere  D. 0 degree Fahrenheit and zero pressure

Last Answer : 0 degree Celsius and one atmosphere

Description : What refers to the heating of the earth’s atmosphere not caused by direct sunlight but by infrared light radiated by the surface and absorbed mainly by atmospheric carbon dioxide?  A. Greenhouse effect  B. Global warming  C. Thermal rise effect  D. Ozone effect

Last Answer : Greenhouse effect

Description : Which of the following does not determine the amount of internal energy an object has?  a. temperature  b. amount of material  c. type of material  d. shape of the object

Last Answer : shape of the object

Description : The amount of heat energy per kilogram that must be added or removed when a substance changes from one phase to another.  a. specific heat  b. heat of expansion  c. latent heat  d. useful heat

Last Answer : latent heat

Description : What refers to the amount of heat removed from the cooled space in BTS’s for 1 watt-hour of electricity consumed?  A. Cost efficiency rating  B. Energy efficiency rating  C. Coefficient of performance  D. Cost of performance

Last Answer : Energy efficiency rating

Description : What refers to the amount of energy absorbed or released during a phase-change process?  A. Molar heat  B. Latent heat  C. Vaporization heat  D. Condensation heat

Last Answer : Latent heat

Description : What is the extremely large amount of energy associated with the strong bonds within the nucleus of the atom itself called?  A. Chemical energy  B. Latent energy  C. Phase energy  D. Nuclear energy

Last Answer : Nuclear energy

Description : Which of the following laws of thermodynamic which leads to the definition of entropy?  a. First law  b. Second law  c. Third law  d. Law of conservation of energy

Last Answer : Second law

Description : Which of the following laws of thermodynamic which leads to the definition of entropy?  a. First law  b. Second law  c. Third law  d. Law of conservation of energy

Last Answer : Second law

Description : In the process of radiation, energy is carried by electromagnetic waves. What is the speed of electromagnetic waves?  A. 182,000 miles/second  B. 184,000 miles/second  C. 186,000 miles/second  D. 188,000 miles/second

Last Answer : 186,000 miles/second

Description : What states that the net change in the total energy of the system during a process is equal to the difference between the total energy entering and the total energy leaving the system during ... Conservation of energy principle  C. Second law of thermodynamics  D. Conservation of mass principle

Last Answer : Conservation of energy principle

Description : What states that the net mass transfer to or from a system during a process is equal to the net change in the total mass of the system during that process?  A. Third law of thermodynamics  B. Conservation of energy principle  C. Second law of thermodynamic  D. Conservation of mass principle

Last Answer : Conservation of mass principle

Description : What law asserts that energy has quality as well as quantity?  A. First law of Thermodynamics  B. Second law of Thermodynamics  C. Third law of Thermodynamics  D. Zeroth law of Thermodynamics

Last Answer : Second law of Thermodynamics

Description : What law asserts that energy is a thermodynamic property?  A. First law of Thermodynamics  B. Second law of Thermodynamics  C. Third law of Thermodynamics  D. Zeroth law of Thermodynamics

Last Answer : First law of Thermodynamics