A state occurs in isentropic process
 a. The change in entropy is 0
 b. The change in entropy is 1
 c. The change in enthalpy is 0
 d. The change in enthalpy is 1

1 Answer

Answer :

The change in entropy is 0

Related questions

Description : Which of the following occurs in a reversible polytrophic process?  a. Enthalpy remains constant  b. Internal energy does not change  c. Some heat transfer occurs  d. Entropy remains constant

Last Answer : Some heat transfer occurs

Description : A thermodynamic process in which entropy is conserved  a. isentropic  b. adiabatic  c. isothermal  d. polytropic

Last Answer : isentropic

Description : A process during which entropy remains constant is called ______ process  A. Isometric  B. Isochoric  C. Isobaric  D. Isentropic

Last Answer : Isentropic

Description : A ______ is a flow in which the gas flow is adiabatic and frictionless and entropy change is zero.  A. Isentropic flow  B. Isobaric flow  C. Steady flow  D. Uniform flow

Last Answer : Isentropic flow

Description : The change that the system that undergoes from one equilibrium state to another is known as  a. oath  b. process  c. enthalpy change  d. entropy change

Last Answer : process

Description : Regardless of the process, the change in enthalpy firm moles of ideal gas is  a. Heat  b. Enthalpy  c. Entropy  d. Density

Last Answer : Heat

Description : Change in enthalpy in a closed system is equal to heat transferred if the reversible process takes place at constant  (a) pressure  (b) temperature  (c) volume  (d) internal energy  (e) entropy.

Last Answer : Answer : a

Description : According to first law of thermodynamics  (a) work done by a system is equal to heat transferred by the system  (b) total internal energy of a system during a process remains constant  ( ... , enthalpy and entropy during a process remain constant  (d) total energy of a system remains constant

Last Answer : Answer : d

Description : If value of n is infinitely large in a polytropic process pV” = C, then the process is known as constant  (a) volume  (b) pressure  (c) temperature  (d) enthalpy  (e) entropy

Last Answer : Answer : a

Description : Entropy is the measure of:  a. The internal energy of a gas  b. The heat capacity of a substance  c. Randomness or disorder  d. The change of enthalpy of a system

Last Answer : Randomness or disorder

Description : If heat be exchanged in a reversible manner, which of the following property of the working substance will change accordingly  (a) temperature  (b) enthalpy  (c) internal energy  (d) entropy  (e) all of the above.

Last Answer : Answer : d

Description : Change in enthalpy of a system is the heat supplied at  (a) constant pressure  (b) constant temperature  (c) constant volume  (d) constant entropy  (e) N.T.P. condition.

Last Answer : Answer : a

Description : A function of state that is associated with disorder in the system and environment.  a. enthalpy  b. entropy  c. law of diminishing return  d. Lenz’ Law

Last Answer : entropy

Description : A state occurs when a system is in equilibrium  a. Natural Environment  b. Closed System  c. Surrounding  d. Isentropic

Last Answer : Natural Environment

Description : Which of the following is the other term used for enthalpy-entropy diagram?  a. Enthalpy diagram  b. Mollier diagram  c. Steam diagram  d. Entropy chart

Last Answer : Mollier diagram

Description : What is the measure of the energy that is no longer available to perform useful work within the current environment?  a. enthalpy  b. entropy  c. internal energy  d. latent heat

Last Answer : entropy

Description : What is known as the total heat and heat content at various times in the history?  a. enthalpy  b. entropy  c. internal energy  d. latent heat

Last Answer : enthalpy

Description : Composite property applicable to all fluids  a. Entropy  b. Enthalpy  c. Specific Heat  d. None of the above

Last Answer : Enthalpy

Description : The first law of thermodynamics is based on which of the following principles?  a. conservation of mass  b. the enthalpy-entropy relationship  c. action – reaction  d. conservation of energy

Last Answer : conservation of energy

Description : What is the energy absorbed during chemical reaction under constant volume conditions?  A. Entropy  B. Ion exchange  C. Enthalpy  D. Enthalpy of reaction

Last Answer : Enthalpy

Description : What refers to the measure of the disorder present in a given substance or system?  A. Enthalpy  B. Entropy  C. Heat capacity  D. Molar heat

Last Answer : Entropy

Description : What is considered as the heat content of a system?  A. Enthalpy  B. Entropy  C. Internal heat  D. Molar heat

Last Answer : Enthalpy

Description : The sum of internal energy (U) and the product of pressure and volume (p.v) is known as  A. workdone  B. entropy  C. enthalpy  D. none of these

Last Answer : Answer: C

Description : Total heat of a substance is also known as  (a) internal energy  (b) entropy  (c) thermal capacity  (d) enthalpy  (e) thermal conductance.

Last Answer : Answer : d

Description : Which of the following parameters is constant for a mole for most of the gases at a given temperature and pressure  (a) enthalpy  (b) volume  (c) mass  (d) entropy  (e) specific volume.

Last Answer : Answer : b

Description : Which of the following is the property of a system  (a) pressure and temperature  (b) internal energy  (c) volume and density  (d) enthalpy and entropy  (e) all of the above.

Last Answer : Answer : e

Description : The index of compression n tends to reach ratio of specific heats y when  (a) flow is uniform and steady  (b) process is isentropic  (c) process is isothermal  (d) process ... specific heat does not change with temperature  (e) process is isentropic and specific heat changes with temperature.

Last Answer : Answer : d

Description : How does an adiabatic process compare to an isentropic process?  A. Adiabatic heat transfer is not equal to zero; isentropic heat transfer is zero  B. Both heat transfer = 0; isentropic: reversible  ... is not equal to zero  D. Both heat transfer is not equal to zero; isentropic: irreversible

Last Answer : Both heat transfer = 0; isentropic: reversible

Description : It is a process during which the pressure remains constant  a. Adiabatic  b. Isentropic  c. Isobaric  d. Isotropic

Last Answer : Isobaric

Description : Another name of reversible adiabatic process  a. Isentropic Process  b. Isometric Process  c. Isobaric Process  d. Isothermal Process

Last Answer : Isentropic Process

Description : The process that has no heat transfer  a. Density  b. Isentropic Process  c. Isometric Process  d. Adiabatic

Last Answer : Adiabatic

Description : The term “isentropic process” used in thermodynamics implies what?  A. Reversible adiabatic process  B. Externally reversible, adiabatic process  C. Internally reversible, adiabatic process  D. Irreversible adiabatic process

Last Answer : Internally reversible, adiabatic process

Description : “A reversible adiabatic process is necessarily isentropic but an isentropic process is not necessarily reversible adiabatic process.” This statement is:  A. True  B. False  C. May be true and may be false  D. Absurd

Last Answer : True

Description : During which of the following process does heat rejection takes place in Carnot cycle?  A. Isothermal expansion  B. Isentropic expansion  C. Isothermal compression  D. Isentropic compression

Last Answer : Answer: C

Description : A heat exchange process in which the product of pressure and volume remains constant is known as  (a) heat exchange process  (b) throttling process  (c) isentropic process  (d) adiabatic process  (e) hyperbolic process.

Last Answer : Answer : e

Description : If a system after undergoing a series of processes, returns to the initial state then  (a) process is thermodynamically in equilibrium  (b) process is executed in closed system cycle  (c) its entropy will ... sum of heat and work transfer will be zero  (e) no work will be done by the system.

Last Answer : Answer : d

Description : An adiabatic process in which there is no change in system enthalpy but for which there is a significant decrease in pressure is called _____.  A. Isochoric process  B. Isobaric process  C. Throttling process  D. Quasistatic process

Last Answer : Throttling process

Description : In an isothermal process,  A. there is no change in temperature  B. there is no change in enthalpy  C. there is no change in internal energy  D. all of these

Last Answer : Answer: D

Description : During the adiabatic process, which of the following is the change in entropy?  a. zero  b. greater than zero  c. less than zero  d. infinity

Last Answer : zero

Description : Twenty grams of ice at 0˚C melts to water at 0˚C. How much does the entropy of the 20g change in this process?  a. 30.5 J/K  b. 24.6 J/K  c. 21.3 J/K  d. 15.7 J/K

Last Answer : 24.6 J/K

Description : During adiabatic, internally reversible process, what is true about the change in entropy?  A. It is temperature-dependent  B. It is always greater than zero  C. It is always zero  D. It is always less than zero

Last Answer : It is always zero

Description : The entropy change of a system during a process is equal to the net entropy transfer through the system boundary and the entropy generated within the system . This statement is known as:  A. Entropy ...  B. Entropy change of a system  C. Entropy balance relation  D. Third law of thermodynamics

Last Answer : Entropy balance relation

Description : During throttling process  (a) heat exchange does not take place  (b) no work is done by expanding steam  (c) there is no change of internal energy of steam  (d) all of the above  (e) entropy decreases.

Last Answer : Answer : d

Description : Change in internal energy in a closed system is equal to heat transferred if the reversible process takes place at constant  (a) pressure  (b) temperature  (c) volume  (d) internal energy  (e) entropy.

Last Answer : Answer : c

Description : For reversible adiabatic process, change in entropy is  (a) maximum  (b) minimum  (c) zero  (d) unpredictable  (e) negative

Last Answer : Answer : c

Description : Steam is throttled to 0.1 MPa with 20 degrees of superheat. (a) What is the quality of throttled steam if its pressure is 0.75 MPa (b) What is the enthalpy of the process?  a) 97.6%,2713 kJ/kg  b) -97.6%, 2713 kJ/kg  c) 87.6%,3713 kJ/kg  d) -87.6%, 3713 kJ/kg

Last Answer : 97.6%,2713 kJ/kg

Description : Occurring at fixed temperature  a. isentropic  b. Adiabatic  c. Isothermal  d. polytropic

Last Answer : Isothermal

Description : One for which no heat is gained or lost  a. Isentropic  b. Adiabatic  c. Isothermal  d. Polytropic

Last Answer : Adiabatic

Description : Otto cycle efficiency is higher than Diesel cycle efficiency for the same compression ratio and heat input because in Otto cycle  A. combustion is at constant volume  B. expansion and compression are isentropic  C. maximum temperature is higher  D. heat rejection is lower

Last Answer : Answer: D

Description : The dual combustion cycle consists of one constant pressure, two constant volume and two isentropic processes.  A. Agree  B. Disagree

Last Answer : Answer: A