Which law states that the internal energy of a gas is a function of temperature
 (a) Charles’ law
 (b) Joule’s law
 (c) Regnault’s law
 (d) Boyle’s law
 (e) there is no such law.

1 Answer

Answer :

Answer : b

Related questions

Description : Which law states that the specific heat of a gas remains constant at all temperatures and pressures  (a) Charles’ Law  (b) Joule’s Law  (c) Regnault’s Law  (d) Boyle’s Law  (e) there is no such law.

Last Answer : Answer : c

Description : According to which law, all perfect gases change in volume by l/273th of their original volume at 0°C for every 1°C change in temperature when pressure remains constant  (a) Joule’s law  (b) Boyle’s law  (c) Regnault’s law  (d) Gay-Lussac law  (e) Charles’ law.

Last Answer : Answer : e

Description : The volume of a confined gas is held constant, the pressure is directly proportional to the absolute temperature.  a. Charle’s Law  b. Boyle’s Law  c. Joule’s Law  d. Specific Heat

Last Answer : Boyle’s Law

Description : p1V1= p2V2  a. Charle's Law  b. Boyle's Law  c. Ideal Gas Law  d. Joule's Law

Last Answer : Boyle's Law

Description : What Law states that the pressure of gas is inversely proportional to its volume at constant temperature?  a. Charles’ law  b. Gay-Lussac’s Law  c. Boyle’s Law  d. Dalton’s Law

Last Answer : Boyle’s Law

Description : Which of the following laws is applicable for the behavior of a perfect gas  (a) Boyle’s law  (b) Charles’law  (c) Gay-Lussac law  (d) all of the above  (e) Joule’s law.

Last Answer : Answer : d

Description : The volume of a gas under constant pressure increases or decrease with temperature.  a. Gay- Lussac’s Law  b. Ideal Gas Law  c. Charles’ Law  d. Boyle’s Law

Last Answer : Charles’ Law

Description : A law relating the pressure, temperature and volume of an ideal gas  a. Gay-Lussac’s Law  b. Ideal gas Law  c. Charles’ Law  d. Boyle’s Law

Last Answer : Ideal gas Law

Description : The pressure of the confined gas is held constant, the volume directly proportional to the absolute temperature.  a. Charle’s Law  b. Boyle’s Law  c. Zeroth Law  d. Gas Law

Last Answer : Charle’s Law

Description : The Law of Thermodynamics that provides the basis for measuring the thermodynamic property of temperature.  a. Charle’s Law  b. Boyle’s Law  c. Zeroth Law  d. Gas Law

Last Answer : Zeroth Law

Description : “If the temperature o f a fixed quantity of a gas is held constant during a change of state, the volume varies inversely with the absolute pressure.  a. Charle’s Law  b. Boyle’s Law  c. Dalton’s Law  d. Amagat’s Law

Last Answer : Boyle’s Law

Description : At Equilibrium, the radiation emitted must equal the radiation absorbed.  a. Boyle’s Law  b. Planck’s Law  c. Kirchoff’s Law  d. Joule’s Law

Last Answer : Kirchoff’s Law

Description : The behaviour of a perfect gas, undergoing any change in the variables which control physical properties, is governed by  A. Boyle’s law  B. Charles’ law  C. Gay-Lussac law  D. all of these

Last Answer : Answer: D

Description : The hyperbolic process is governed by  A. Boyle’s law  B. Charles’ law  C. Gay-Lussac law  D. Avogadro’s law

Last Answer : Answer: A

Description : An isothermal process is governed by  A. Boyle’s law  B. Charles’ law  C. Gay-Lussac law  D. Avogadro’s law

Last Answer : Answer: A

Description : For a perfect gas, according to Boyle’s law (where p = Absolute pressure, v = Volume, and T = Absolute temperature)  A. p v = constant, if T is kept constant  B. v/T = constant, if p is kept constant  C. p/T = constant, if v is kept constant  D. T/p = constant, if v is kept constant

Last Answer : Answer: A

Description : The statement that molecular weights of all gases occupy the same volume is known as  (a) Avogadro’s hypothesis  (b) Dalton’s law  (c) Gas law  (d) Law of thermodynamics  (e) Joule’s law.

Last Answer : Answer : a

Description : Measurement of temperature is based on  (a) thermodynamic properties  (b) zeroth law of thermodynamics  (c) first law of thermodynamics  (d) second law of thermodynamics  (e) joule’s law.

Last Answer : Answer : b

Description : “At constant pressure, the volume of a gas is inversely proportional to the pressure”. This is known as ______.  A. Boyle’s Law  B. Charles’s Law  C. Gay-Lussac Law  D. Ideal gas law

Last Answer : Boyle’s Law

Description : The absolute pressure of a given mass of a perfect gas varies inversely as its volume, when the temperature remains constant. This statement is known as Charles’ law.  A. Yes  B. No

Last Answer : Answer: B

Description : For a body cooling in a draft, the rate of heat loss is proportional to the difference in temperature between the body and its surroundings.  a. Nemst Effect  b. Caloric Theory  c. Joule’s Law  d. Newton’s Law of Cooling

Last Answer : Newton’s Law of Cooling

Description : Boyle’s law i.e. pV = constant is applicable to gases under  (a) all ranges of pressures  (b) only small range of pressures  (c) high range of pressures  (d) steady change of pressures  (e) atmospheric conditions.

Last Answer : Answer : b

Description : What type of pressure cannot be used for Boyle’s Law?  a. Atmospheric Pressure  b. Gauge Pressure  c. Surface Pressure  d. Isobaric Pressure

Last Answer : Gauge Pressure

Description : The theory that heat consisted of a fluid, which could be transferred from one body to another, but not “created” or “destroyed”.  a. Clausius Theorem  b. Caloric Theory  c. Joules Law  d. Newton’s Law of cooling

Last Answer : Caloric Theory

Description : The acceleration of a particular body is directly proportional to the resultant force acting on it & inversely proportional to its mass.  a. Pascal's Law  b. Joule's Law  c. Newton's Law  d. None of the above

Last Answer : Newton's Law

Description : An adiabatic process is one in which  A.no heat enters or leaves the gas  B.the temperature of the gas changes  C.the change in internal energy is equal to the mechanical workdone  D.all of the above

Last Answer : Answer: D

Description : For which of the following substances, the internal energy and enthalpy are the functions of temperature only  (a) any gas  (b) saturated steam  (c) water  (d) perfect gas  (e) superheated steam.

Last Answer : Answer : d

Description : In a non-flow reversible process for which p = (- 3V+ 15) x 105N/m2,V changes from 1 m to 2 m3. The work done will be about  (a) 100 xlOO5 joules  (b) lxlO5 joules  (c) 10 xlO5 joules  (d) 10 xlO5 kilo joules  (e) 10xl04ki\ojoules.

Last Answer : Answer : c

Description : Find the change in internal energy of 5 lb. of oxygen gas when the temperature changes from 100 ˚F to 120 ˚F. CV = 0.157 BTU/lbm-˚R  A.14.7 BTU  B.15.7 BTU  C. 16.8 BTU  D. 15.9 BTU Formula: U= mcv T

Last Answer : 15.7 BTU

Description : Two thick slices of bread, when completely oxidized by the body, can supply 200,000 cal of heat. How much work is this equivalent to?  a) 4,190,000 joules  b) 8,390,000 joules  c) 839, ... d) 419 000 joules Formula: J =Work/Heat J = mechanical equivalent of heat whose value is 4.19 joules/calorie

Last Answer : 419 000 joules

Description : How many joules of work is the equivalent of 15000 cal of heat?  a) 62850 joules  b) 3579.95 joules  c) 14995.81 joules  d) 15004.19 joules Formula: J =Work/Heat J = mechanical equivalent of heat whose value is 4.19 joules/calorie

Last Answer : 62850 joules

Description : 1 British thermal unit (BTU) is equivalent to how many joules?  A. 1016  B. 1043  C. 1023  D. 1054

Last Answer : 1054

Description : One erg is equivalent to how many joules?  A. 10^-8  B. 10^-7  C. 10^-6  D. 10^-5

Last Answer : 10^-7

Description : One calorie is equivalent to how many joules?  A. 4.448  B. 4.184  C. 4.418  D. 4.814

Last Answer : 4.184

Description : First law of thermodynamics  (a) enables to determine change in internal energy of the system  (b) does not help to predict whether the system will or not undergo a change  (c) does not enable ... entropy  (d) provides relationship between heat, work and internal energy  (e) all of the above.

Last Answer : Answer : e

Description : First law of thermodynamics furnishes the relationship between  (a) heat and work  (b) heat, work and properties of the system  (c) various properties of the system  (d) various thermodynamic processes  (e) heat and internal energy.

Last Answer : (b) heat, work and properties of the system

Description : What form of energy refers to those a system possesses as a whole with respect to some outside reference frame, such as potential and kinetic energies?  A. Macroscopic form of energy  B. Microscopic form of energy  C. Internal energy  D. External energy

Last Answer : Macroscopic form of energy

Description : What statement of the second law of thermodynamics states that it is impossible to build a device that operates in a cycle and produces no effect other than the transfer of heat from a lower- ... A. Kelvin-Planck statement  B. Clausius statement  C. Kelvin statement  D. Rankine statement

Last Answer : Clausius statement

Description : In an isothermal process,  A. there is no change in temperature  B. there is no change in enthalpy  C. there is no change in internal energy  D. all of these

Last Answer : Answer: D

Description : According to first law of thermodynamics  (a) work done by a system is equal to heat transferred by the system  (b) total internal energy of a system during a process remains constant  ( ... , enthalpy and entropy during a process remain constant  (d) total energy of a system remains constant

Last Answer : Answer : d

Description : A gas is compressed in a cylinder by a movable piston to a volume onehalf its original volume. During the process 300 kJ heat left the gas and internal energy remained same. The work done on gas in Nm will be  (a) 300 Nm  (b) 300,000 Nm  (c) 30 Nm  (d) 3000 Nm  (e) 30,000 Nm.

Last Answer : Answer : b

Description : In an isothermal process, the internal energy of gas molecules  (a) increases  (b) decreases  (c) remains constant  (d) may increase/decrease depending on the properties of gas  (e) shows unpredictable behaviour.

Last Answer : Answer : c

Description : If heat be exchanged in a reversible manner, which of the following property of the working substance will change accordingly  (a) temperature  (b) enthalpy  (c) internal energy  (d) entropy  (e) all of the above.

Last Answer : Answer : d

Description : Change in internal energy in a closed system is equal to heat transferred if the reversible process takes place at constant  (a) pressure  (b) temperature  (c) volume  (d) internal energy  (e) entropy.

Last Answer : Answer : c

Description : Change in enthalpy in a closed system is equal to heat transferred if the reversible process takes place at constant  (a) pressure  (b) temperature  (c) volume  (d) internal energy  (e) entropy.

Last Answer : Answer : a

Description : Which of the following is the property of a system  (a) pressure and temperature  (b) internal energy  (c) volume and density  (d) enthalpy and entropy  (e) all of the above.

Last Answer : Answer : e

Description : Zeroth law of thermodynamics  (a) deals with conversion of mass and energy  (b) deals with reversibility and irreversibility of process  (c) states that if two systems are both in equilibrium with a ... in thermal equilibrium with each other  (d) deals with heat engines  (e) does not exist.

Last Answer : Answer : c

Description : Entropy is the measure of:  a. The internal energy of a gas  b. The heat capacity of a substance  c. Randomness or disorder  d. The change of enthalpy of a system

Last Answer : Randomness or disorder

Description : The energy associated with individual molecules in a gas, liquid or solid.  a. Specific Energy  b. Molecular Energy  c. Internal Energy  d. Phase Energy

Last Answer : Internal Energy

Description : When the gas is heated at constant volume, the heat supplied increases the internal energy of the gas.  A.True  B.False

Last Answer : Answer: A