Pick up the correct assumption of the theory of simple bending 

(A) The value of the Young's modulus is the same in tension as well as in compression 

(B) Transverse section of a beam remains plane before and after bending 

(C) The material of the beam is homogeneous and isotropic 

(D) All the above

1 Answer

Answer :

(D) All the above

Related questions

Description : The assumption in the theory of bending of beams is:  (A) Material is homogeneous  (B) Material is isotropic  (C) Young's modulus is same in tension as well as in compression  (D) All the above 

Last Answer : (D) All the above 

Description : In a simple bending theory, one of the assumption is that the material of the beam is isotropic. This assumption means that the a. normal stress remains constant in all directions b. ... c. elastic constants are same in all the directions d. elastic constants varies linearly in the material

Last Answer : c. elastic constants are same in all the directions

Description : Pick up the assumption for the design of a pre-stressed concrete member from the following: (A) A transverse plane section remains a plane after bending (B) During deformation limits, Hook's ... of stress in reinforcement due to changes in external loading is negligible (D) All the above

Last Answer : Answer: Option D

Description : Which of the following is not an assumption in derivation of torsion equation? a. Circular shaft remains circular after twisting b. Plane section of the shaft remain plane after twisting c. Material of shaft is isotropic d. Angle of twist is proportional to radius

Last Answer : d. Angle of twist is proportional to radius

Description : In a simple bending theory, one of the assumption is that the plane sections before bending remain plane after bending. This assumption means that a. stress is uniform throughout the beam b. ... the distance from the neutral axis d. strain is proportional to the distance from the neutral axis

Last Answer : d. strain is proportional to the distance from the neutral axis

Description : In a singly reinforced beam (A) Compression is borne entirely by concrete (B) Steel possesses initial stresses when embedded in concrete (C) Plane sections transverse to the centre line ... Elastic moduli for concrete and steel have different values within the limits of deformation of the beam

Last Answer : Answer: Option C

Description : In a R.C section under flexure, the assumption that a plane section before bending remains plane after bending leads to (a) Strain distribution being linear across the depth (b) ... strain distribution being linear across the depth (d) Shear stress distribution being uniform along the depth

Last Answer : (a) Strain distribution being linear across the depth

Description : The application of elastic theory to the beams is based on the assumption that (a) At any cross-section, plane sections before bending remain plane after bending (b) All tensile stresses are taken ... reinforcement is free from initial stresses when it is embedded in concrete. (d) All of the above

Last Answer : (d) All of the above

Description : The following assumption is not true in the theory of pure torsion:  (A) The twist along the shaft is uniform  (B) The shaft is of uniform circular section throughout  (C) Cross- ... , which is plane before twist remains plane after twist  (D) All radii get twisted due to torsion 

Last Answer : (D) All radii get twisted due to torsion 

Description : the derivation of Thiem's formula, Q = (S1 - S2)/[2.3 log10( / )] the following assumption is not applicable (A) The aquifer is homogeneous and isotropic (B) Flow lines are radial and ... the water surface is too small (D) The well has been sunk up to the surface of the unconfined aquifer

Last Answer : Answer: Option D

Description : Which of the following relationships is correct for relating the three elastic constants of an isotropic elastic material (where, E = Young's modulus, G = Modulus of rigidity or shear modulus v = Poisson's ratio)? (A) E = 2G (1 + v) (B) E = G (1 + v) (C) E = G (1 + v)/2 (D) E = 2G (1 + 2v)

Last Answer : (A) E = 2G (1 + v)

Description : Select the incorrect statement from the following In eccentrically loaded columns, [ A ] The tensile strength of concrete is ignored [ B ] Design stress - strain curve for steel in compression is the ... different points in the section will be same [ D ] Plane section remain plane even after bending

Last Answer : [ C ] The strain at different points in the section will be same

Description : Derivation of Thiem's formula Q = 2 (s1 - s2)/2.3 log10 (r2/r1) is based on the assumption  (A) The aquifer is homogeneous, isotropic and of infinite depth and area  (B) The well is sunk ... (C) The flow lines are radial and horizontal, and the flow is laminar  (D) All the above 

Last Answer : (D) All the above 

Description : Pick up the correct statement from the following: (A) Plain cement concrete is equally strong in compression as well as in tension (B) Slump test is performed to check concrete strength (C ... D) Fineness modulus is the index number expressing the relative sizes of both coarse and fine aggregates

Last Answer : Option D

Description : A beam is a structural member which is subjected to (a) Axial tension or compression (b) Transverse loads and couples (c) Twisting moment (d) No load, but its axis should be horizontal and x-section rectangular or circular

Last Answer : b) Transverse loads and couples

Description : A cantilever shaft having 50 mm diameter and a length of 300 mm has a disc of mass 100 kg at its free end. The Young’s modulus for the shaft material is 200 GN/m 2 . Determine the frequency of transverse vibrations of the shaft. a) 31 b) 35 c) 37 d) 41

Last Answer : d) 41

Description : Coulomb's wedge theory assumes that (A) Back fill is dry, cohesionless, homogeneous and isotropic (B) Slip surface is the plane which passes through the heel of the wall (C) Position and direction of the resultant earth pressure are known (D) All the above

Last Answer : (D) All the above

Description : A reinforced concrete beam is assumed to be made of  (A) Homogeneous material  (B) Heterogeneous material  (C) Isotropic material  (D) None of these 

Last Answer : (B) Heterogeneous material 

Description : is the pre-stressed force applied to the tendon of a rectangular pre-stressed beam whose area of cross section is and sectional modulus is . The maximum stress in the beam, subjected to a maximum bending moment , is (A) f = (P/A) + (Z/M) ... ) + (M/Z) (C) f = (P/A) + (M/Z) (D) f = (P/A) + (M/6Z)

Last Answer : Answer: Option C

Description : is the pre-stressed force applied to tendon of a rectangular pre-stressed beam whose area of cross section is and sectional modulus is . The minimum stress on the beam subjected to a maximum bending moment is (A) f = (P/A) - (Z/M) (B) f = (A/P) - (M/Z) (C) f = (P/A) - (M/Z) (D) f = (P/A) - (M/6Z)

Last Answer : Answer: Option C

Description : For a given material Young's modulus is 200 GN/m2 and modulus of rigidity is 80 GN/m2 . The value of Poisson's ratio is (A) 0.15 (B) 0.20 (C) 0.25 (D) 0.30

Last Answer : (C) 0.25

Description : Elongation of a bar of uniform cross section of length ‘L’, due to its own weight ‘W’ is given by a. 2WL/E b. WL/E c. WL/2E d. WL/3E Where, E=Young’s modulus of elasticity of material

Last Answer : c. WL/2E

Description : Strain energy of a member may be equated to  (A) Average resistance × displacement  (B) ½ stress × strain × area of its cross-section  (C) ½ stress × strain × volume of the member  (D) ½ (stress)2  × volume of the member + Young's modulus E

Last Answer : (D) ½ (stress)2  × volume of the member + Young's modulus E

Description : Terzaghi's analysis assumes: (A) Soil is homogeneous and isotropic (B) Elastic zone has straight boundaries inclined at = to the horizontal and plastic zones fully developed (C) Failure zones do not extend above the horizontal plane through the base of the footing (D) All the above

Last Answer : Answer: Option D

Description : Pick up the correct statement from the following:  (A) For channels, the shear centre does not coincide its centroid  (B) The point of intersection of the bending axis with the cross section ... shear centre coincides with the centroid of the cross section of the beam  (D) All the above

Last Answer : (D) All the above

Description : The strength of a beam depends upon (a) Its section modulus (b) Permissible bending stress (c) Both (a) and (b) (d) None of these

Last Answer : (a) Its section modulus

Description : The section of a reinforced beam where most distant concrete fibre in compression and tension in steel attains permissible stresses simultaneously, is called (A) Balanced section B) Economic section (C) Critical section (D) All the above

Last Answer : Answer: Option D

Description : The section of a reinforced beam where most distant concrete fiber in compression and tension in steel attains permissible stresses simultaneously is called (i)Balanced section (ii)Economic section (iii)Critical section [ A ] i [ B ] i and ii [ C ] i and iii [ D ] i, ii and iii

Last Answer : [ D ] i, ii and iii

Description : The Euler's equation for the motion of liquids is based upon the assumption that (A) The fluid is non - viscous, homogeneous and incompressible (B) The velocity of flow is uniform over the section (C) The flow is continuous, steady and along the stream line (D) All of the above

Last Answer : Answer: Option D

Description : According to the steel beam theory of doubly reinforced beams (A) Tension is resisted by tension steel (B) Compression is resisted by compression steel (C) Stress in tension steel equals the stress in compression steel (D) All the above

Last Answer : Answer: Option D

Description : Under sagging bending moment, the uppermost fiber of the beam is in (a) Shear (b) Compression (c) Tension (d) None)

Last Answer : (b) Compression

Description : An open-ended cylinder of radius and thickness is subjected to internal pressure . The Young's modulus for the material is and Poisson's ratio is . The longitudinal strain is (A) Zero (B) pr/TE (C) pr/2TE (D) None of these

Last Answer : (A) Zero

Description : For a given material, if E, C, K and m are Young's modulus, shearing modulus, bulk modulus and Poisson ratio, the following relation does not hold good (A) E = 9KC/3K + C (B) E = 2K (1 + 2/m) (C) E = 2C (1 + 1/m) (D) E = 3C (1 - 1/m)

Last Answer : (C) E = 2C (1 + 1/m)

Description : In pre-stressed concrete (A) Forces of tension and compression change but lever arm remains unchanged (B) Forces of tension and compressions remain unchanged but lever arm changes with the moment ( ... arm change (D) Both forces of tension and compression as well as lever arm remain unchanged

Last Answer : Answer: Option B

Description : For a homogeneous & isotropic body under hydrostatic pressure, which theory of elastic failure does not fail (a) Firstly Maximum Principal Theory (b) Secondly Maximum Shear Stress Theory (c) Thirdly Maximum Principal Energy Theory (d) None

Last Answer : (a) Firstly Maximum Principal Theory

Description : For a homogeneous & isotropic body under hydrostatic pressure, which theory of elastic failure fails (a) Firstly Maximum Principal Theory (b) Secondly Maximum Principal strain Theory (c) Thirdly Maximum Principal Energy Theory (d) None

Last Answer : (c) Thirdly Maximum Principal Energy Theory

Description : Pick out the correct statement. (A) Materials exhibiting high elasticity obey Hooke's law (B) The elastic behaviour of rubber under compression is the same as its behaviour under tension (C) ... to its plastic deformation (D) The stress required to cause plastic flow in polycrystalline material is

Last Answer : Option B

Description : The materials which have the same elastic properties in all directions, are called  (A) Isotropic  (B) Brittle  (C) Homogeneous  (D) Hard 

Last Answer : (A) Isotropic 

Description : If M, I, R, E, F, and Y are the bending moment, moment of inertia, radius of curvature, modulus of  elasticity stress and the depth of the neutral axis at section, then  (A) M/I = R/E = F/Y (B) I/M = R/E = F/Y (C) M/I = E/R = E/Y (D) M/I = E/R = Y/F

Last Answer : (C) M/I = E/R = E/Y

Description : If Z and I are the section modulus and moment of inertia of the section, the shear force F and bending moment M at a section are related by (A) F = My/I (B) F = M/Z (C) F = dM/dx (D) F Mdx

Last Answer : (C) F = dM/dx

Description : If the tendon is placed at an eccentricity e below the centroidal axis of the longitudinal axis of a rectangular beam (sectional modulus Z and stressed load P in tendon) the stress at the extreme top edge (A) Is ... by PZ/e (B) Is increased by Pe/Z (C) Is decreased by Pe/Z (D) Remains unchanged

Last Answer : Answer: Option C

Description : What is Young’s modulus? Describe an experiment to find out Young’s modulus of material

Last Answer : What is Young’s modulus? Describe an experiment to find out Young’s modulus of material in the form of a long straight wire.

Description : If S is stress, Y is Young’s modulus of material of a wire, the energy stored in the wire per unit volume is (a) 2Y/S (b) S/2Y (c) 2S2Y (d) S2/2Y

Last Answer : Ans:(d)

Description : Which of the following mechanical properties of a material is most structure insensitive? (A) Modulus of elasticity (young's modulus) (B) Toughness (C) Percentage reduction of area (D) Tensile strength

Last Answer : (A) Modulus of elasticity (young's modulus)

Description : The resistance to fatigue of a material is measured by (a) elastic limit (b) Young's modulus (c) ultimate tensile strength (d) endurance limit

Last Answer : (d) endurance limit

Description : A cantilever shaft having 50 mm diameter and a length of 300mm has a disc of mass 100 kg at its free end. The Young’s modulus for the shaft material is 200 GN/m^2. Determine the static deflection of shaft in mm. A 0.144 B 0.244 C 0.344 D 0.444

Last Answer : A 0.144

Description : A cantilever shaft having 50 mm diameter and length of 300 mm has a disc of mass 100 kg at its free enD. The Young’s modulus for the shaft material is 200 GN/m 2 . Calculate the natural longitudinal frequency in Hz. A. 575B. 625 C. 525 D. 550

Last Answer : A. 575

Description : A cantilever shaft having 50 mm diameter and a length of 300 mm has a disc of mass 100 kg at its free end. The Young’s modulus for the shaft material is 200 GN/m 3 . Determine the static deflection of the shaft in mm. a) 0.147 b) 0.213 c) 0.132 d) 0.112

Last Answer : a) 0.147

Description : A cantilever shaft having 50 mm diameter and length of 300 mm has a disc of mass 100 kg at its free end. The Young’s modulus for the shaft material is 200 GN/m 2 . Calculate the natural longitudinal frequency in Hz. a) 575 b) 625 c) 525 d) 550

Last Answer : a) 575

Description : A cantilever shaft has a diameter of 6 cm and the length is 40cm, it has a disc of mass 125 kg at its free end. The Young’s modulus for the shaft material is 250 GN/m2. Calculate the static deflection in nm. a) 0.001 b) 0.083c) 1.022 d) 0.065

Last Answer : a) 0.001