The pressure at a point in a fluid is not the same in all directions, when
the fluid is viscous and
(A) Moving
(B) Static
(C) Cold
(D) Hot

1 Answer

Answer :

(A) Moving

Related questions

Description : The pressure at a point in a fluid will not be same in all the directions when the fluid is (A) Moving (B) Viscous (C) Viscous and static (D) Viscous and moving

Last Answer : Answer: Option D

Description : The normal stress is the same in all directions at a point in a fluid, when the fluid is (A) Non-viscous (B) Incompressible (C) Both (A) and (B) (D) Having no motion of one fluid layer relative to the other

Last Answer : (D) Having no motion of one fluid layer relative to the other

Description : Pick out the wrong statement. (A) In a static mass of liquid, the pressure at a point is the same for all liquids (B) Pressure decreases exponentially with elevation in an isothermal atmosphere (C) ... s law, the pressure at a point in a static or uniformly moving fluid is equal in all directions

Last Answer : (A) In a static mass of liquid, the pressure at a point is the same for all liquids

Description : Leidenfrost point is a term concerned with the (A) Condensation of the saturated vapor on a cold surface (B) Concentration of a corrosive solution by evaporation (C) Heat transfer between two highly viscous liquids (D) Boiling of a liquid on a hot surface

Last Answer : (D) Boiling of a liquid on a hot surface

Description : The pressure intensity is the same in all directions at a point in a fluid (A) Only when the fluid is frictionless (B) Only when the fluid is at rest having zero velocity (C) When there is ... relative to an adjacent layer (D) Regardless of the motion of one fluid layer relative to an adjacent layer

Last Answer : C) When there is no motion of one fluid layer relative to an adjacent layer

Description : What states that for a confined fluid, the pressure at a point has the same magnitude in all directions?  A. Avogadro’s Law  B. Amagat Law  C. Pascal’s Law  D. Bernoulli’s Theorem

Last Answer : Pascal’s Law

Description : Pick out the wrong statement. (A) The controlling resistance in case of heating of air by condensing steam is in the air film (B) The log mean temperature difference (LMTD) for ... a pure fluid at a given pressure from liquid to vapor or vice-versa occurs at saturation temperature

Last Answer : (C) In case of a 1 - 2 shell and tube heat exchanger, the LMTD correction factor value increases sharply, when a temperature cross occurs

Description : A moving fluid mass may be brought to a static equilibrium position, by applying an imaginary inertia force of the same magnitude as that of the accelerating force but in the opposite direction. This statement is called (A) Pascal's law (B) (C) D-Alembert's principle (D) None of these

Last Answer : Answer: Option C

Description : The normal stress is the same in all directions at a point in a fluid, only when the fluid (A) Is at rest & has zero viscosity (B) Is frictionless (C) Fluid layer has no motion relative to an adjacent layer of fluid (D) is incompressible & frictionless

Last Answer : (D) is incompressible & frictionless

Description : Pascal law is not applicable for a/an __________ fluid. (A) Accelerating frictionless (B) Static (C) Uniformly moving (D) None of these

Last Answer : (D) None of these

Description : Which of the following fluid forces are not considered in the Navier￾Stoke's equation? (A) Gravity forces (B) Viscous forces (C) Pressure forces (D) Turbulent forces

Last Answer : (D) Turbulent forces

Description : Which of the fluid forces are not considered in the Reynold's equation of flow? (A) Viscous forces (B) Turbulent forces (C) Pressure forces (D) Compressibility forces

Last Answer : (D) Compressibility forces

Description : _________ fluid force is not considered in the Navier-Stokes equation. (A) Turbulent (B) Viscous (C) Gravity (D) Pressure

Last Answer : (A) Turbulent

Description : Fluid passes the same pressure in all directions' This statement is related to which rule? -General Knowledge

Last Answer : answer:

Description : The normal stress is same in all directions at a point in a fluid (A) Only when the fluid is frictionless (B) Only when the fluid is incompressible and has zero viscosity (C) When there ... to an adjacent layer (D) Irrespective of the motion of one fluid layer relative to an adjacent layer

Last Answer : Answer: Option C

Description : LMTD for counter-flow and parallel flow heat exchanger will be the same, when the (A) Cold fluid is heated to a certain temperature by condensing steam (isothermal fluid) (B) Outlet temperature of ... temperature of hot fluid is less than the outlet temperature of the cold fluid (D) None of these

Last Answer : (A) Cold fluid is heated to a certain temperature by condensing steam (isothermal fluid)

Description : Bernoulli's principle states that, for streamline motion of an incompressible non-viscous fluid: A. the pressure at any part + the kinetic energy per unit volume = constant B. the kinetic ... + the kinetic energy per unit volume + the potential energy per unit volume = constant

Last Answer : the pressure at any part + the kinetic energy per unit volume + the potential energy per unit volume = constant

Description : The fluid forces considered in the Navier Stokes equation are (A) Gravity, pressure and viscous (B) Gravity, pressure and turbulent (C) Pressure, viscous and turbulent (D) Gravity, viscous and turbulent

Last Answer : Answer: Option A

Description : Calculate coefficient of viscous damper, if the system is critically damped. Consider the following data: 1. Mass of spring mass damper system = 350 kg 2. Static deflection = 2 x 10 -3 m 3. Natural frequency of the system = 60 rad/sec ... /m B. 80 x 10 3 N-s/m C. 42 x 10 3 N-s/m D. None of the above

Last Answer : C. 42 x 10 3 N-s/m

Description : Calculate coefficient of viscous damper, if the system is critically damped. Consider the following data: 1. Mass of spring mass damper system = 350 kg 2. Static deflection = 2 x 10 -3 m 3. Natural frequency of the system = 60 rad/sec ... /m b. 80 x 10 3 N-s/m c. 42 x 10 3 N-s/m d. None of the above

Last Answer : c. 42 x 10 3 N-s/m

Description : At Pr > 1, conduction in an ordinary fluid flowing through a heated pipe is limited to the (A) Buffer zone (B) Turbulent core (C) Both (A) and (B) (D) Viscous sub-layer

Last Answer : (D) Viscous sub-layer

Description : Navier-Stokes equation is useful in the analysis of __________ fluid flow problems. (A) Non-viscous (B) Viscous (C) Turbulent (D) Rotational

Last Answer : (B) Viscous

Description : Pick out the wrong statement pertaining to fluid flow. (A) The ratio of average velocity to the maximum velocity for turbulent flow of Newtonian fluid in circular pipes is 0.5 (B) The Newtonian ... at the centre of the pipe (C) Navier-Stokes equation is applicable to the analysis of viscous flows

Last Answer : (A) The ratio of average velocity to the maximum velocity for turbulent flow of Newtonian fluid in circular pipes is 0.5

Description : The terminal velocity of a small sphere settling in a viscous fluid varies as the (A) First power of its diameter (B) Inverse of the fluid viscosity (C) Inverse square of the diameter (D) Square of the difference in specific weights of solid & fluid

Last Answer : (B) Inverse of the fluid viscosity

Description : Which of the following assumptions enables the Euler's equation of motion to be integrated? (A) The fluid is incompressible (B) The fluid is non-viscous (C) The continuity equation is satisfied (D) The flow is rotational and incompressible

Last Answer : (A) The fluid is incompressible

Description : Turbulent flow generally occurs for cases involving (A) Highly viscous fluid (B) Very narrow passages (C) Very slow motion (D) None of these

Last Answer : (D) None of these

Description : A fluid whose apparent viscosity increases with shear rate is termed as the __________ fluid. (A) Newtonian (B) Viscous (C) Dilatant (D) Non-viscous

Last Answer : (C) Dilatan

Description : An ideal fluid is (A) Non-viscous (B) Incompressible (C) Both (A) & (B) (D) Neither (A) & (B

Last Answer : (C) Both (A) & (B)

Description : Mach number is important in a fluid flow problem, when the inertia and __________ forces predominate. (A) Elastic (B) Viscous (C) Gravity (D) None of these

Last Answer : (A) Elastic

Description : Mach number is important in a fluid flow problem, when the inertia and __________ forces predominate. (A) Elastic (B) Viscous (C) Gravity (D) None of these

Last Answer : A) Elastic

Description : Which of the following exemplifies a three dimensional fluid flow? (A) Fluid flow at the inlet to a nozzle (B) Fluid flow between parallel plates (C) Viscous fluid flow between converging plates (D) None of these

Last Answer : (A) Fluid flow at the inlet to a nozzle

Description : An ideal fluid is (A) Frictionless & incompressible (B) One, which obeys Newton's law of viscosity (C) Highly viscous (D) None of these

Last Answer : (A) Frictionless & incompressible

Description : Forces acting on a particle settling in fluid are __________ forces. (A) Gravitational & buoyant (B) Centrifugal & drag (C) Gravitational or centrifugal buoyant drag (D) External, drag & viscous

Last Answer : (C) Gravitational or centrifugal buoyant drag

Description : Applicability of Bernoulli's equation is limited to a/an __________ fluid, that does not exchange shaft work with the surroundings. (A) Incompressible (B) Non-viscous (C) Both (A) and (B) (D) Neither (A) nor (B)

Last Answer : (C) Both (A) and (B)

Description : Pick out the wrong statement. (A) A fluid mass is free from shearing forces, when it is made to rotate with a uniform velocit (B) Newton's law of viscosity is not applicable to the ... types of bearings (D) Rise of water in capillary tubes reduces with the increasing diameter of capillary tubes

Last Answer : (B) Newton's law of viscosity is not applicable to the turbulent flow of fluid with linear velocity distribution

Description : In case of unsteady fluid flow, conditions & flow pattern change with the passage of time at a position in a flow situation. Which of the following is an example of unsteady flow? (A) ... level is maintained (D) Low velocity flow of a highly viscous liquid through a hydraulically smooth pipe

Last Answer : (B) Water flow in the suction and discharge pipe of a reciprocating pump

Description : Which of the following forces does not act on a fluid at rest? (A) Viscous force (B) Gravity force (C) Hydrostatic force (D) Surface tension force

Last Answer : (A) Viscous force

Description : The normal stress in a fluid will be constant in all directions at a point only if (A) It is incompressible (B) It has uniform viscosity (C) It has zero viscosity (D) It is at rest

Last Answer : Answer: Option D

Description : Pick out the wrong statement about cavitation. (A) Sudden reduction of pressure in a fluid flow system caused by flow separation, vortex formation or abrupt closing of valve leads to cavitation ... (D) Large scale cavitation cannot damage pipeline, restrict fluid flow and damage steam turbine blades

Last Answer : (D) Large scale cavitation cannot damage pipeline, restrict fluid flow and damage steam turbine blades

Description : __________ is used for measuring the static pressure exerted on the wall by a fluid flowing parallel to the wall in a pipeline. (A) Venturimeter (B) Pressure gauge (C) Pitot tube (D) Orificemeter

Last Answer : (C) Pitot tube

Description : Centre of pressure of a plane surface of arbitrary shape immersed vertically in a static mass of fluid (A) Lies above the centroid of the plane surface (B) Is independent of the specific weight of the fluid (C) Is different for different fluids (D) Is at the centroid of the plane surface

Last Answer : (B) Is independent of the specific weight of the fluid

Description : A piezometer opening measures the __________ fluid pressure. (A) Static (B) Undisturbed (C) Total (D) Dynamic

Last Answer : (B) Undisturbed

Description : I am hot. I am hidden. I am cold. I am hard. I am sharp. I am soft. I am still. I am moving. I am above. I am below. I am two and one. Always changing. Always the same. What am I? -Riddles

Last Answer : Water.

Description : In a 1-1 concurrent heat exchanger, if the tube side fluid outlet temperature is equal to the shell side fluid outlet temperature, then the LMTD is (A) ∞ (B) 0 ... temperature (D) Equal to the difference between hot fluid inlet temperature and cold fluid outlet temperature

Last Answer : (B) 0

Description : In a heat exchanger, the rate of heat transfer from the hot fluid to the cold fluid (A) Varies directly as the area and the LMTD (B) Directly proportional to LMTD and inversely proportional to the area (C) Varies as square of the area (D) None of these

Last Answer : (A) Varies directly as the area and the LMTD

Description : In case of parallel flow heat exchanger, the lowest temperature theoretically attainable by the hot fluid is __________ the outlet temperature of the cold fluid. (A) Equal to (B) More than (C) Less than (D) Either more or less than (depending upon the fluid)

Last Answer : (A) Equal to

Description : In a counter flow heat exchanger, hot fluid enters at 170°C & leaves at 150°C, while the cold fluid enters at 50°C & leaves at 70°C. The arithmetic mean temperature difference in this case is __________ °C. (A) 20 (B) 60 (C) 120 (D) ∞

Last Answer : (D) ∞

Description : For a cold dilute feed to produce thick viscous liquor, backward feeding as compared to forward feeding results in (A) Increased economy (B) Decreased economy (C) Lower capacity (D) No effect on economy

Last Answer : (A) Increased economy