In Newton's law range, the terminal velocity of a solid spherical
particle falling through a stationary fluid mass varies as the __________ of
its diameter.
(A) Inverse
(B) Square root
(C) Second power
(D) First power

1 Answer

Answer :

(B) Square root

Related questions

Description : In the Newton's law range, the terminal velocity of a solid spherical particle falling through a stationary fluid mass is __________ the fluid viscosity. (A) Directly proportional to (B) Inversely proportional to (C) Inversely proportional to the square root of (D) Independent of

Last Answer : (B) Inversely proportional to

Description : The terminal velocity of a solid spherical particle falling through a stationary fluid mass in the Stoke's law range is proportional to the (A) Inverse of fluid viscosity (B) Square of particle size (C) Difference in the densities of the particle & fluid (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : The terminal velocity of a small sphere settling in a viscous fluid varies as the (A) First power of its diameter (B) Inverse of the fluid viscosity (C) Inverse square of the diameter (D) Square of the difference in specific weights of solid & fluid

Last Answer : (B) Inverse of the fluid viscosity

Description : The terminal velocity of a particle moving through a fluid varies as dp n . What is the value of n' for Newton's law regime? (A) 0.5 (B) 1 (C) 1.5 (D) 3

Last Answer : (A) 0.5

Description : In Newton's law range, the drag co-efficient for the motion of spherical particle in a stationary fluid is (A) 0.44 (B) 0.044 (C) 4.4 (D) 44

Last Answer : (A) 0.44

Description : The terminal velocity of a particle moving through a fluid varies as dp n . The value of n is equal to __________ in Stoke's law regime. (A) 1 (B) 0.5 (C) 2 (D) 1.5

Last Answer : (C) 2

Description : The fluid velocity varies as the square root of the cylindrical pipe diameter in case of steady state laminar flow at constant pressure drop of __________ fluid. (A) Dilatent (B) Pseudo-plastic (C) Bingham plastic (D) Newtonian

Last Answer : (A) Dilatent

Description : The terminal velocity of a sphere setting in a viscous fluid varies as : (a) The Reynolds number (b) The square of its diameter (c) Directly proportional to the viscosity of the fluid (d) Its diameter

Last Answer : (b) The square of its diameter

Description : For a fluid rotating at constant angular velocity about vertical axis as a rigid body, the pressure intensity varies as the (A) Square of the radial distance (B) Radial distance linearly (C) Inverse of the radial distance (D) Elevation along vertical direction

Last Answer : (A) Square of the radial distance

Description : The fluid velocity varies as the square of the cylindrical pipe diameter, in case of steady state laminar flow at constant pressure drop, for __________ fluid. (A) Newtonian (B) Dilatant (C) Pseudo-plastic (D) Non-Newtonian

Last Answer : (A) Newtonian

Description : The ratio of the wall drag to the form drag in the Stoke's law range (for motion of spherical particles in a stationary fluid) is (A) 0.5 (B) 1 (C) 2 (D) 0.33

Last Answer : (C) 2

Description : Drag co-efficient for motion of spherical particles in a stationary fluid in the stoke's law range is (A) 24/NRe,P (B) 16/NRe,P (C) 64/NRe,P (D) 48/NRe,P

Last Answer : (A) 24/NRe,P

Description : Pick out the wrong statement. (A) A fluid mass is free from shearing forces, when it is made to rotate with a uniform velocit (B) Newton's law of viscosity is not applicable to the ... types of bearings (D) Rise of water in capillary tubes reduces with the increasing diameter of capillary tubes

Last Answer : (B) Newton's law of viscosity is not applicable to the turbulent flow of fluid with linear velocity distribution

Description : A bed of spherical particles (specific gravity 2.5) of uniform size 1500 μm is 0.5 m in diameter and 0.5 m high. In packed bed state, the porosity may be taken as 0.4. Ergun's equation for the above fluid-particle ... fluidisation velocity, VOM is (A) 12 mm/s (B) 16 mm/s (C) 24 mm/s (D) 28 mm/s

Last Answer : (B) 16 mm/s

Description : For motion of spherical particles in a stationary fluid, the drag co￾efficient in hindered settling compared to that in free settling is (A) More (B) Less (C) Equal (D) More or less, depending on the type of particle

Last Answer : (A) More

Description : The settling velocity of a spherical particle of diameter less than 0.1 mm as per Stock’s law, is A. Vs = 418 (Gs – Gw) d [(3T + 70)/100] B. Vs = 418 (Gs – Gw)d² [(3T + 70)/100] C. Vs = 218 (Gs – Gw)d² [(3T + 70)/100] D. Vs = 218 (Gs – Gw)d [(3T + 70)/100]

Last Answer : ANS: B

Description : For the non-catalytic reaction of particles with surrounding fluid, the time needed to achieve the same fractional conversion for particles of different but unchanging sizes is proportional to the square of particle diameter, ... through ash layer (C) Chemical reaction (D) Either (A), (B) or (C)

Last Answer : (B) Diffusion through ash layer

Description : The fluid velocity varies as the cube of the cylindrical pipe diameter in case of steady state laminar flow at constant pressure drop for __________ fluid. (A) Newtonian (B) Pseudo-plastic (C) Dilatent (D) Bingham plastic

Last Answer : (B) Pseudo-plastic

Description : Which law/principle of solid mechanics is similar/equivalent to Newton's law of viscosity in fluid mechanics? (A) Archimedes principle (B) Newton's second law of motion (C) Hooke's law (D) Newton's third law of motion

Last Answer : (C) Hooke's law

Description : What is the force required (in Newtons) to hold a spherical balloon stationary in water at a depth of H from the air-water interface? The balloon is of radius 0.1 m and is filled with air. (A) 4πg/3 (B) 0.01 πgH/4 (C) 0.01 πgH/8 (D) 0.04 πgH/3

Last Answer : (A) 4πg/3

Description : A bed of spherical particles (specific gravity 2.5) of uniform size 1500 μm is 0.5 m in diameter and 0.5 m high. In packed bed state, the porosity may be taken as 0.4. Ergun's equation for the above fluid-particle system ... What is the porosity of the fluidised bed? (A) 0.2 (B) 0.5 (C) 0.7 (D) 0.8

Last Answer : (C) 0.7

Description : When a small spherical body falls in a viscous fluid, its speed increases first, then deceases and eventually it acquires a constant speed called the terminal speed. The terminal speed depends upon (a) The ... ) The density of the body (c) The diameter of the body (d) All the above parameters

Last Answer : Ans:(d)

Description : __________ forces act on a particle moving through a stationary fluid (A) Gravity (B) Drag (C) Buoyant (D) All (A), (B), & (C)

Last Answer : (D) All (A), (B), & (C)

Description : Which of the following must be followed by the flow of a fluid (real or ideal)? (I) Newton's law of viscosity. (II) Newton's second law of motion. (III) The continuity equation. (IV) Velocity of boundary layer must be zero relative to ... . (A) I, II, III (B) II, III, V (C) I, II, V (D) II, IV, V

Last Answer : (B) II, III, V

Description : Pick out the wrong statement. (A) The form drag is dependent upon the occurrence of a wake (B) The shear stress at any given cross-section of a pipe for steady flow (either laminar or turbulent ... of viscosity (D) Existence of the boundary layer in fluid flow is because of viscosity of the fluid

Last Answer : (C) An ideal fluid is the one, which has negligible surface tension and obeys the Newton's law of viscosity

Description : Which of the following varies as the square root of oil pressure during atomisation of fuel oil through a pressure jet burner? (A) Output & fineness (B) Velocity (C) Both (A) & (B) (D) None of these

Last Answer : Option C

Description : The continuity equation (A) Relates mass flow rate along a stream tube (B) Relates work and energy (C) Stipulates that Newton's second law of motion must be satisfied at every point in the fluid (D) None of these

Last Answer : (A) Relates mass flow rate along a stream tube

Description : For a sphere falling in the constant drag co-efficient regime, its terminal velocity depends on its diameter (D) as (A) d (B) √d (C) d 2 (D) 1/d

Last Answer : (C) d

Description : Consider the following statements in respect of steady laminar flow through a circular pipe: 1. Shear stress is zero on the central axis of the pipe 2. Discharge varies directly with the viscosity of the fluid 3. Velocity is maximum at the ... 2 , 3 & 4 (b) 1 & 3 only (c) 2 & 4 only (d)3 & 4 only

Last Answer : (b) 1 & 3 only

Description : A particle is settling in a liquid under Stokesian conditions. The free falling velocity of the particle is proportional to (A) √(Particle diameter) (B) Particle diameter (C) (Particle diameter)2 (D) (Particle diameter)3

Last Answer : B) Particle diameter

Description : The passengers standing in a bus fall in the backward direction when the stationary bus begins to move. Which of the following laws explains this situation? (1) Newton's First Law of Motion (2) Newton's Third Law of Motion (3) Newton's Second Law of Motion (4) The Law of Conservation of Momentum

Last Answer : (1) Newton's First Law of Motion Explanation: According to Newton's first law of motion (law of inertia) a body either at rest or in uniform motion will remain so unless acted on by a force When the passengers are standing on the bus, they (and the bus) are in a state of uniform motion.

Description : The head loss in turbulent flow in a pipe varies (A) Directly as the velocity (B) Inversely as the square of the velocity (C) Approximately as the square of the velocity (D) Inversely as the square of the diameter

Last Answer : (C) Approximately as the square of the velocity

Description : The head loss in turbulent flow in a pipe varies (A) As velocity (B) As (velocity) 2 (C) Inversely as the square of diameter

Last Answer : (B) As (velocity)

Description : The head loss in turbulent flow in a pipe varies (A) As velocity (B) As (velocity) 2 (C) Inversely as the square of diameter

Last Answer : (C) Inversely as the square of diameter

Description : Power requirement of fans having constant wheel diameter varies __________ fan speed. (A) As square of (B) Directly as (C) As cube of (D) None of these

Last Answer : (C) As cube of

Description : If the specific gravity of a soil particle of 0.05 cm diameter is 2.67, its terminal velocity while settling in distilled water of viscosity, 0.01 poise, is (A) 0.2200 cm/sec (B) 0.2225 cm/sec (C) 0.2250 cm/sec (D) 0.2275 cm/sec

Last Answer : (D) 0.2275 cm/sec

Description : In continuous filtration (at a constant pressure drop), filtrate flow rate varies inversely as the (A) Square root of the velocity (B) Square of the viscosity (C) Filtration time only (D) Washing time only

Last Answer : (A) Square root of the velocity

Description : For the free settling of a spherical particle through a fluid, the slope of, CD-log NRe , plot is (A) 1 (B) -1 (C) 0.5 (D) -0.5

Last Answer : (B) -1

Description : . The pressure and power requirement of a gas fan at constant speed & capacity varies __________ the gas density. (A) Directly as (B) Inversely as square root of (C) Inversely as (D) As square of

Last Answer : (A) Directly as

Description : Pick out the correct statement. (A) A forced vortex occurs when fluid rotates as a solid about an axis (B) In laminar flow, Newton's law of viscosity does not apply (C) A free vortex occurs, when fluid rotates as a solid (D) In turbulent flow, there are neither cross-currents nor eddies

Last Answer : (A) A forced vortex occurs when fluid rotates as a solid about an axis

Description : The kinetic energy of a stone falling near the earth's surface through a vacuum increases with the: w) square root of its velocity x) cube root of its velocity y) square of its velocity z) cube of its velocity

Last Answer : ANSWER: Y -- SQUARE OF ITS VELOCITY

Description : A spherical particle is falling slow in a viscous liquid such that Reynolds number is less than 1. Which statement is correct for this situation? (A) Inertial and drag forces are important (B) Drag ... forces are important (C) Drag force and gravitational forces are important (D) None of the above

Last Answer : (B) Drag, gravitational and buoyancy forces are important

Description : he Radius (or diameter) of bright rings in Newton's rings is (a) Directly proportional to the square root of odd numbers (b) Inversely proportional to the square root of natural numbers (c) ... to the square root of even numbers (d) Directly proportional to the square root of natural numbers

Last Answer : (a) Directly proportional to the square root of odd numbers

Description : In Newton's Ring experiments , the diameter of dark rings is proportional to A. Odd Natural numbers B. Natural Number C. Even Natural Number D. Square root of natural number

Last Answer : In Newton's Ring experiments , the diameter of dark rings is proportional to A. Odd Natural numbers B. Natural Number C. Even Natural Number D. Square root of natural number

Description : n Newton's Ring experiments , the diameter of bright rings is proportional to A. Square root of Odd Natural numbers B. Natural Number C. Even Natural Number D. Square root of natural number

Last Answer : B. Natural Number

Description : For the non catalytic reaction of particles with surrounding fluid, the same needed to achieve the same fractional conversion for particles of different unchanging sizes is proportional to the particle diameter, when the ... through ash layer (C) Chemical reaction (D) Either (A), (B) or (C)

Last Answer : (C) Chemical reaction

Description : Overall rate of reaction in a heterogeneous catalytic reaction depends upon the mass and energy transfer from the fluid to solid surface and its rate of reaction is usually __________ the concentration of ... to (B) Independent of (C) Inversely proportional to (D) Proportional to the square o

Last Answer : (A) Proportional to

Description : What is the escape velocity of a particle of mass m varies? -Do You Know?

Last Answer : answer:

Description : What is the escape velocity of a particle of mass m varies?

Last Answer : mo

Description : The losses in open channel flow generally vary as the (A) Inverse of the roughness (B) First power of the roughness (C) Square of the velocity (D) Inverse square of hydraulic radius

Last Answer : (B) First power of the roughness