When a small spherical body falls in a viscous fluid, its speed increases first, then deceases and eventually it acquires a constant speed called the terminal speed. The terminal speed depends upon (a) The density and viscosity of the fluid (b) The density of the body (c) The diameter of the body (d) All the above parameters

1 Answer

Answer :

Ans:(d)  

Related questions

Description : The terminal velocity of a small sphere settling in a viscous fluid varies as the (A) First power of its diameter (B) Inverse of the fluid viscosity (C) Inverse square of the diameter (D) Square of the difference in specific weights of solid & fluid

Last Answer : (B) Inverse of the fluid viscosity

Description : The terminal velocity of a sphere setting in a viscous fluid varies as : (a) The Reynolds number (b) The square of its diameter (c) Directly proportional to the viscosity of the fluid (d) Its diameter

Last Answer : (b) The square of its diameter

Description : A falling drop of rain water acquires the spherical shape due to (1) Viscosity (2) Surface Tension (3) Atmospheric pressure (4) Gravitational force 

Last Answer : Surface Tension

Description : In the Newton's law range, the terminal velocity of a solid spherical particle falling through a stationary fluid mass is __________ the fluid viscosity. (A) Directly proportional to (B) Inversely proportional to (C) Inversely proportional to the square root of (D) Independent of

Last Answer : (B) Inversely proportional to

Description : The terminal velocity of a solid spherical particle falling through a stationary fluid mass in the Stoke's law range is proportional to the (A) Inverse of fluid viscosity (B) Square of particle size (C) Difference in the densities of the particle & fluid (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : Minimum fluidisation velocity for a specific system depends upon the (A) Particle size (B) Fluid viscosity (C) Density of both the particle & the fluid (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : Shell side pressure drop in a shell and tube heat exchanger does not depend upon the (A) Baffle spacing & shell diameter (B) Tube diameter & pitch (C) Viscosity, density & mass velocity of shell side fluid (D) None of these

Last Answer : (D) None of these

Description : Location of vena-contracta in an orificemeter does not depend upon the (A) Type of orifice (B) Density, viscosity & compressibility of the fluid (C) Ratio of pipe diameter to orifice diameter (D) Pipe roughness

Last Answer : (A) Type of orifice

Description : A 30% (by volume) suspension of spherical sand particles in a viscous oil has a hindered settling velocity of 4.44 μm/s. If the Richardson Zaki hindered settling index is 4.5, then the terminal velocity of a sand grain is (A) 0.90 μm/s (B) 1 μm/s (C) 22.1 μm/s (D) 0.02 μm/s

Last Answer : (B) 1 μm/s

Description : Pick out the wrong statement. (A) A fluid mass is free from shearing forces, when it is made to rotate with a uniform velocit (B) Newton's law of viscosity is not applicable to the ... types of bearings (D) Rise of water in capillary tubes reduces with the increasing diameter of capillary tubes

Last Answer : (B) Newton's law of viscosity is not applicable to the turbulent flow of fluid with linear velocity distribution

Description : In Newton's law range, the terminal velocity of a solid spherical particle falling through a stationary fluid mass varies as the __________ of its diameter. (A) Inverse (B) Square root (C) Second power (D) First power

Last Answer : (B) Square root

Description : Which of the following statements is true? (a) Both salinity and density of sea increase with depth (b) Both salinity and density of sea decrease with depth (c) Salinity increase but density of sea deceases with depth (d) Salinity decreases but density of sea increases with depth

Last Answer : Ans:(d)

Description : Critical velocity in a pipe flow (A) Increases as fluid viscosity increases (B) Increases as pipe diameter increases (C) Independent of fluid density (D) None of these

Last Answer : (B) Increases as pipe diameter increases

Description : Which of the following parameters of the fluid is not very important, while deciding its route in a shell and tube heat exchanger? (A) Corrosiveness & fouling characteristics (B) Pressure (C) Viscosity (D) Density

Last Answer : (D) Density

Description : A fluid whose apparent viscosity increases with shear rate is termed as the __________ fluid. (A) Newtonian (B) Viscous (C) Dilatant (D) Non-viscous

Last Answer : (C) Dilatan

Description : Power required for mixing Newtonian fluids is a function of the (A) Speed of impeller, diameter of impeller & viscosity (B) Density & viscosity of fluid only (C) Density of fluid, viscosity of fluid & impeller dia only (D) None of these

Last Answer : (D) None of these

Description : For the same terminal conditions and valve size, the pressure drop in a fully opened globe valve as compared to that in a gate valve is (A) More (B) Less (C) Equal (D) Either (A) or (B); depends on the viscosity of the fluid

Last Answer : (A) More

Description : A suspended particle falls through a height minutes. If the viscosity of water is and specific gravity of the particle is , the diameter of the particle is (where M is a constant factor) (A) 103M (H/t) (B) 104M (H/t) (C) 105M (H/t) (D) 102M (H/t)

Last Answer : Answer: Option C

Description : Pressure exerted by a liquid depends upon its (A) Surface tension (B) Density (C) Viscosity

Last Answer : Option B

Description : Separation of a mixture of two gases by absorption in the liquid solvent depends upon the difference in their (A) Viscosity (B) Density (C) Solubility (D) Relative volatility

Last Answer : (C) Solubility

Description : For a sphere falling in the constant drag co-efficient regime, its terminal velocity depends on its diameter (D) as (A) d (B) √d (C) d 2 (D) 1/d

Last Answer : (C) d

Description : Pressure gradient in the pipe flow is influenced by the (A) Diameter of pipe (B) Velocity of the fluid (C) Density & viscosity of the fluid (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : Optimum economic pipe diameter for fluid is determined by the (A) Viscosity of the fluid (B) Density of the fluid (C) Total cost considerations (pumping cost plus fixed cost of the pipe) (D) None of these

Last Answer : (C) Total cost considerations (pumping cost plus fixed cost of the pipe)

Description : Friction factor for fluid flow in pipe does not depend upon the (A) Pipe length (B) Pipe roughness (C) Fluid density & viscosity (D) Mass flow rate of fluid

Last Answer : A) Pipe length

Description : An ideal fluid is (A) Frictionless & incompressible (B) One, which obeys Newton's law of viscosity (C) Highly viscous (D) None of these

Last Answer : (A) Frictionless & incompressible

Description : For laminar flow of a fluid through a packed bed of spheres of diameter d, the pressure drop per unit length of bed depends upon the sphere diameter as (A) d (B) d 2 (C) d 4 (D) d

Last Answer : (D) d

Description : The fluid property which matters for falling rain drops to acquire spherical shape is its (A) Pressure (B) Height of descend (C) Viscosity (D) Surface tension

Last Answer : (D) Surface tension

Description : In case of a pipe of constant cross-sectional area, the maximum fluid velocity obtainable is (A) The velocity of sound (B) Dependent on its cross-sectional area (C) Dependent on fluid viscosity (D) Dependent on fluid density

Last Answer : (A) The velocity of sound

Description : Lead ball falls through water more slowly than through air because A. The value of ‘g’ is less in water B. Density of air is less than that of water C. Of the viscous force in water D. Of the surface tension of water

Last Answer : ANSWER: C

Description : With increase in the temperature, viscosity of a liquid (A) Increases (B) Decreases (C) Remain constant (D) May increase or decrease; depends on the liquid

Last Answer : (B) Decreases

Description :  Pressure in fluid depends upon A. depth below the surface B. density of fluid C. the value of g D. all of above

Last Answer : all of above

Description : The capacity of a pneumatic conveying system depends upon the (A) Bulk density of materials (B) Pressure of the conveying air (C) Diameter of the conveying line (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : Due to a rise in temperature, the viscosity and the unit weight of the percolating fluid are reduced to 60% and 90% respectively. If other things remain constant, the coefficient of permeability (A) Increases by 25 % (B) Increases by 50 % (C) Increases by 33.3 % (D) Decreases by 33.3 %

Last Answer : (B) Increases by 50 %

Description : Assume that the speed (v) of sound in air depends upon the pressure (P) and density (ρ) of air, then use dimensional analysis to obtain

Last Answer : Assume that the speed (v) of sound in air depends upon the pressure (P) and density (ρ) ... analysis to obtain an expression for the speed of sound.

Description : Transition from laminar flow to turbulent flow in fluid flow through a pipe does not depend upon the (A) Length of the pipe (B) Diameter of the pipe (C) Density of the fluid (D) Velocity of the fluid

Last Answer : (A) Length of the pipe

Description : Spherical shape of mercury droplets is due to its (A) High viscosity (B) Low surface tension (C) High density (D) High surface tension

Last Answer : Option D

Description : For a given fluid, as the pipe diameter increases, the pumping cost (A) Decreases (B) Increases (C) Remains the same (D) May increase or decrease, depending upon whether the fluid is Newtonian or non-Newtonian

Last Answer : (A) Decreases

Description : The Euler's equation for the motion of liquids is based upon the assumption that (A) The fluid is non - viscous, homogeneous and incompressible (B) The velocity of flow is uniform over the section (C) The flow is continuous, steady and along the stream line (D) All of the above

Last Answer : Answer: Option D

Description : Water drops are spherical because of - (1) viscosity (2) density (3) polarity (4) surface tension

Last Answer : (4) surface tension Explanation: Surface tension is responsible for the shape of liquid droplets. Although easily deformed, droplets of water tend to be pulled into a spherical shape by ... absence of other forces, including gravity, drops of virtually all liquids would be approximately spherical.

Description : A flow in which the volume of a fluid and its density does not change during the flow is called _________ flow. (A) Incompressible (B) Compressible (C) Viscous (D) None of these

Last Answer : Answer: Option A

Description : If the specific gravity of a soil particle of 0.05 cm diameter is 2.67, its terminal velocity while settling in distilled water of viscosity, 0.01 poise, is (A) 0.2200 cm/sec (B) 0.2225 cm/sec (C) 0.2250 cm/sec (D) 0.2275 cm/sec

Last Answer : (D) 0.2275 cm/sec

Description : Pick up the incorrect statement from the following:  (A) The flow in strainer type wells is radial  (B) The flow in cavity type wells in spherical  (C) In strainer type wells, area of flow ... pipe  (D) In cavity type wells, area of flow depends upon the size of the cavity 

Last Answer : (C) In strainer type wells, area of flow depends upon the length of the strainer pipe 

Description : A bed of spherical particles (specific gravity 2.5) of uniform size 1500 μm is 0.5 m in diameter and 0.5 m high. In packed bed state, the porosity may be taken as 0.4. Ergun's equation for the above fluid-particle ... fluidisation velocity, VOM is (A) 12 mm/s (B) 16 mm/s (C) 24 mm/s (D) 28 mm/s

Last Answer : (B) 16 mm/s

Description : A bed of spherical particles (specific gravity 2.5) of uniform size 1500 μm is 0.5 m in diameter and 0.5 m high. In packed bed state, the porosity may be taken as 0.4. Ergun's equation for the above fluid-particle system ... What is the porosity of the fluidised bed? (A) 0.2 (B) 0.5 (C) 0.7 (D) 0.8

Last Answer : (C) 0.7

Description : For the Stoke's law to be valid in the case of a falling sphere in a fluid, the (A) Reynolds number (based on sphere diameter) should be < 1 (B) Flow around the sphere should be in turbulent region (C) Sphere must be metallic (D) Fluid density should be constant

Last Answer : (C) Sphere must be metallic

Description : Pick out the wrong statement. (A) The conversion for a gas phase reaction increases with decrease in pressure, if there is an increase in volume accompanying the reaction (B) With ... phase reaction increases with increase in pressure, if there is a decrease in volume accompanying the reaction

Last Answer : (B) With increase in temperature, the equilibrium constant increases for an exothermic reaction

Description : The velocity of the liquid flowing through the divergent portion of a Venturimeter (A) Remains constant (B) Increases (C) Decreases (D) Depends upon mass of liquid

Last Answer : Answer: Option C

Description : The pressure of the liquid flowing through the divergent portion of a Venturimeter (A) Remains constant (B) Increases (C) Decreases (D) Depends upon mass of liquid

Last Answer : Answer: Option C

Description : Bernoulli's principle states that, for streamline motion of an incompressible non-viscous fluid: A. the pressure at any part + the kinetic energy per unit volume = constant B. the kinetic ... + the kinetic energy per unit volume + the potential energy per unit volume = constant

Last Answer : the pressure at any part + the kinetic energy per unit volume + the potential energy per unit volume = constant

Description : In case of unsteady fluid flow, conditions & flow pattern change with the passage of time at a position in a flow situation. Which of the following is an example of unsteady flow? (A) ... level is maintained (D) Low velocity flow of a highly viscous liquid through a hydraulically smooth pipe

Last Answer : (B) Water flow in the suction and discharge pipe of a reciprocating pump